

A novel optimization approach for sub-hourly unit commitment with large numbers of generators and virtuals

Jianghua Wu¹, Bing Yan¹, Mikhail Bragin¹, Yonghong Chen², Peter B. Luh¹

¹Electrical & Computer Engineering, University of Connecticut ²Midcontinent Independent System Operator (MISO)

Sub-hourly UC and virtuals

- Hourly unit commitment is becoming insufficient for operators to manage power systems efficiently [1]
- Sub-hourly UC is a way to improve the reliability of power systems. Comparing to hourly UC,
 - Increased number of periods \Rightarrow larger size
 - Reduced unit ramping capabilities per period ⇒ increased complexity
- For certain systems, e.g., MISO's, there are many virtuals:
 - Related to continuous variables only and with linear costs
 - Coupled with transmission constraints \Rightarrow increased computation

 [1] "FERC Order 764," Available: https://www.ferc.gov/whats-new/comm-meet/2012/062112/E-3.pdf

- Consider a MISO's problem with 1,100 generators and 15,000 virtuals over 36 hours with 15 minutes as time intervals
- State-of-art branch-and-cut (B&C) does not find a quality solution within 50 minutes because of the difficulties mentioned previously
- Our novel decomposition and coordination approach finds a nearoptimal solution in 20 minutes

3

Overview of the presentation

- Problem formulation
- A novel decomposition and coordination approach
 - Obtain subproblems' "good enough" solutions without formally pursuing optimality
- Virtuals included in each subproblem
- Parallelization
- Numerical testing results

Problem formulation

• Sub-hourly UC: the same formulation as hourly UC

- Subject to standard
 - unit-level constraints, e.g., minimum up/down time, ramp rate and so on
 - system-wide constraints, e.g., demand, reserve and transmission capacity

A novel decomposition and coordination approach

- Decomposition and coordination Lagrangian Relaxation (LR)
 - A price-based "dual" approach \Rightarrow reduce complexity exponentially
 - Major difficulties:
 - Solve all subproblems \Rightarrow time-consuming
 - Suffer from major zigzagging of multipliers
 - Need to guess the optimal dual value q^*

 \Rightarrow Death to LR?

- Surrogate LR (SLR): Overcame all above difficulties
 - Surrogate optimality condition \Rightarrow guarantee convergence
 - Satisfied after solving one subproblem to update multipliers
 - Obtain smoother directions with much less effort
 - Stepsizing rule without requiring q^*
- Surrogate Absolute-Value Lagrangian Relaxation (SAVLR)
 - Accelerate convergence by adding absolute value penalties
 - A subproblem may require a long time to solve

- The original problem is decomposed into subproblems by
 - Dividing generators into subproblems by areas
 - Including all virtuals in each subproblem (discuss later)
- The objective function of subproblem *j* at iteration *k* :

$$\min_{\substack{\lambda^{D,k}, p^{k}, u^{k} \\ \delta^{k}, x^{k}}} \sum_{t \in T} \left[\sum_{i \in G_{j}} \left(C_{it}^{gen} p_{it}^{k} + C_{it}^{NL} u_{it}^{k} + C_{i}^{start} \delta_{it}^{k} \right) + \sum_{i \in VT} C_{it}^{virtual} x_{it}^{k} \right]$$
(3)

$$+\lambda_{t}^{D,k}\left(\sum_{i\in G_{i}}(p_{it}^{k})+\sum_{i\notin G_{i}}(p_{it}^{k-1})+\sum_{i\in VT}x_{it}^{k}-D_{t}\right)+\frac{c}{2}\left|\sum_{i\in G_{i}}(p_{it}^{k})+\sum_{i\notin G_{i}}(p_{it}^{k-1})+\sum_{i\in VT}x_{it}^{k}-D_{t}\right|$$

Demand constraints relaxed by multipliers $\lambda_t^{D,k}$

Absolute value penalties for demand constraints violations

 For each iteration, the simple surrogate optimality condition is checked to guarantee algorithm convergence

$$\frac{L(\lambda_{J}^{D,k}, p_{J}^{k}, p_{-J}^{k-1}, u_{J}^{k}, \delta_{J}^{k}, x_{J}^{k})}{\text{Surrogate dual value}} < L(\lambda_{J}^{D,k}, p_{J}^{k-1}, p_{-J}^{k-1}, u_{J}^{k-1}, \delta_{J}^{k-1}, x_{J}^{k-1})$$
(4)

• Subproblems are normally solved by B&C in SAVLR

- However, SAVLR may still require a long CPU time
 Long subproblem solving time (≈160s)
- Can this be improved? Yes. How?
 - A specific property of SAVLR:
 - Subproblem solutions only need to be "good enough" to satisfy the surrogate optimality condition

 \Rightarrow A new optimization approach inspired by Ordinal Optimization

- Obtain subproblems' "good enough" solutions without formally pursuing optimality
 - Solve simplified models or modify previous solutions ⇒ solution candidates ⇒ obtain subproblem solutions quickly by "ordering" candidates based on surrogate dual values
 - Use B&C to solve subproblems when a good enough solution cannot be obtained (rarely)

 \Rightarrow Reduce the subproblem solving time significantly (160s \rightarrow 50s)

- When the surrogate optimality condition is satisfied:
 - Even though the quality of subproblem solutions may not be as good as those obtained by B&C, the overall solution quality is not affected
 - The total number of iterations needed is about the same as that in SAVLR+B&C

Flow chart

- Subproblems are generally solved by ordering solution candidates
- ⇒Reduce the solving time significantly
 - Can this be further improved? How?

Virtuals included in each subproblem

• To obtain fast convergence, virtuals are not divided into subproblems

Surrogate dual values over iterations

- Divide virtuals into subproblems ⇒ slow convergence
- Include virtuals in each subproblem ⇒ fast convergence

Parallelization

- Parallelization is used to further accelerate the approach
 - Solve a subset of subproblems at a time ⇒ avoid major zigzagging of multipliers as observed in LR
 - Use the combination of subproblem solutions that meets the surrogate optimality condition ⇒ guarantee convergence
 - Adjust values of virtuals based on the merged results \Rightarrow reduce constraint violations

Numerical testing results

- Testing on multiple MISO's UC problems, which are hard even for hourly UC (> 20 min)
 - With about 1,100 generators and 15,000 virtuals
 - Over 36 hours with 15 minute time intervals
- Implementation
 - Python 2.7 and Gurobi 7.5.0 on HIPPO platform
 - HP EliteBook with MISO's server, Intel® Core (TM) i7-7600U CPU @ 2.80 GHz RAM 16 GB
- To measure solution quality, the best known lower bounds are obtained by B&C in advance

Case 1: 1105 generators; 15843 virtuals; 227 transmission lines						
	Solving Time (s)	Total Time (s)	Iteration #	Gap (%)		
B&C	5211	5443	N/A	0.9		
SAVLR+B&C	2985	4086	20	0.9		
SAVLR+OO +B&C (sequential)	1484	3237	20	0.77		
SAVLR+OO +B&C (parallel)	979	1639	20	0.84		

Feasible solutions over time

- Our approach never uses B&C to obtain the subproblem solution in this case
- Our approach uses the same number of iterations to obtain the feasible solution and reduces the subproblem solving time from 162s to 53s
- Our approach outperforms pure B&C and SAVLR+B&C

Case 2: 1109 generators; 16504 virtuals; 220 transmission lines					
	Solving Time (s)	Total Time (s)	Gap (%)		
B&C	2548	3000	2		
Our approach (parallel)	990	1409	1.1		
Case 3: 1118 generators; 14955 virtuals; 226 transmission lines					
	Solving Time (s)	Total Time (s)	Gap (%)		
B&C	2787	3120	4.31		
Our approach (parallel)	638	993	3.09		
Case 4: 1102 generators; 14482 virtuals; 235 transmission lines					
	Solving Time (s)	Total Time (s)	Gap (%)		
B&C	3089	3600	76		
Our approach (parallel)	619	1016	1.6		

The parallel version of our approach obtains near-optimal solutions ٠ efficiently in multiple hard cases, and the results demonstrate that the approach is robust

Conclusion

- SAVLR+OO+B&C is a vast improvement over traditional LR
 - New optimization concept!
 - Without formally pursuing optimality of subproblems ⇒ drastically reduces subproblems' solving time
 - Virtuals included in each subproblem \Rightarrow fast convergence
 - Efficient parallelization \Rightarrow with further speedup
- Exciting results
 - Our approach takes the same number of iterations as those of SAVLR to obtain feasible solutions of the same quality but with much reduced subproblem solving time
 - Our approach obtains near-optimal solutions within 20 minutes while B&C could not find a quality solution within 50 minutes
- The approach has potential to solve other complex problems in power systems and beyond

