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= Today’s Practice
= Contributions

= Qverview

= Local Solution Method
= Global Solution Method
= UC+ACOPF Results

= Ongoing Work
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TODAY’S PRACTICE
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Issues in Day-Ahead Markets

= QOperational Challenges

= Committing Least Cost + Maintaining Reliability

= Qut-of-Merit Reliability Commitments

= Improving convergence between day-ahead and real-time prices

= Algorithmic Challenges

= Accounting for reliability needs in dispatch and pricing optimization
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= Better physical representation of the generating units and underlying

network
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Unit Commitment in the Day-Ahead Market
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Current Practices Proposed Approach

SCUC ACOPF

UC/Security-Constrained UC

« Copper-plate (no network/single node)

* |Ignores congestion; requires cutsets to
proxy capacity limits on network

* Most tractable

SCUC DCOPF

« Real power flows only (proportional to
current)

« BO (full) or PTDF (compact) approach
Extensions:

* Accounts for losses

« Nomograms/cutsets to proxy reliability
requirements

Co-optimizes real and reactive power
dispatch

Accounts for commitments needed for
blackstart service, reactive support,
voltage support, and interface control
Nonlinear, nonconvex on meshed
networks
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The link between physics and prices Lok

= Locational marginal pricing (LMP) is the spot price of electricity

= Dual variable/Lagrange multiplier (A, ) to real power balancing at all buses
P — P + DY = (An)

ACOPF Pn = |Un| Z U | (G €08 O + B sin6,,,,,)
meN
meN meN
DCOPF with losses Pn = Z (Gnm (Of,,,m)2 /2 + Bnmenm)
me

The LMP incorporates the marginal cost of supplying the next MW of load
for a given location in time; includes

1. marginal unit cost,

2. cost of network congestion (due to thermal line limits), and
3. cost of real power losses on the network
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CONTRIBUTIONS
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CONTRIBUTIONS
OVERVIEW
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UC+ACOPF: MINLP rh) p

Min Production Costs + Startup Costs + No-Load Costs
System Data

subject to Nodal voltage limits
AC Network Limits Reserve requirements
Real power balancing Real/reactive power load
Reactive power balancing Transformer tap ratio and phase-shifters
Voltage magnitude bounds Thermal line limits and line R/X/B
Thermal line limits Shunts

Spinning reserves
Generator Data

Apparent Power Production Limits § Synchronous condensers
Max/min real/reactive power generation TO state and startup lags
Ramp up/down rates on real power Minimum up/down time
Minimum up/down time Ramp up/down limits

Startup/shutdown ramp limits
Min/max real/reactive power limits

e § Extends Morales-Espania, Latorre, and Ramos, “Tight and compact MILP formulation for the thermal unit commitment
c,cC,,Cth problem,” IEEE Trans. on Power Syst., vol. 28, no. 4, pp. 4897—-4908, 2013.
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Nodal Power Balancing is Nonconvex
= Polar Power-Voltage Power Flow Formulation (PSV)

U ¢ ] Z (Ut (Grm €0S Opm ¢ + Brm sin O 1) — p:;t + ppt =0, Vn e N
meN

U ¢ ] Z (U t| (Grm SINOppy t — Bpm €08 0 1) — q;[’t +qn =0, Vn e N
meN

= Rectangular Power-Voltage Power Flow Formulation (RSV)

(U Z (Gnmv;},,t — Bpmv?, t) + v P Z (Gnmv + T Bamvy, t) = pit +0,: =0, VneN

meN meN
meN meN

= Rectangular Current Injection Formulation (RIV)

iZ,t - ( Z i?l;(n,m) t sz :Lt - be 37”) = 0, (U;,ti;,t + U%,t%,t) - p;t,t +p’r—L,t =0, Vneg N

k(n, )eF
%] E : :J s, _ J ogr ;] + - _
/Ln,t o ( Zkz(n,m),t + G Un ,t + Bn n t) - 07 (Un,tzn,t o Un,tzn,t) o qn,t + qn,t - 07 Vn € N
k(n, )eF
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MINLP solved by Outer Approximation S (OA)

fminimizex f(x),
subject to g(x) <0,

X € X,

x; € Z,Vi €l

A

\

f:R" - R, g: R" - R™are twice continuously differentiable functions,

X c R"is a bounded polyhedral set, and
I € {1,...,n}is the index set of integer variables

=
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c””CCRh § Outer Approximation Algorithm (Duran and Grossman, 1986); Graphics (Belotti et al., 2013)
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LOCAL SOLUTION METHOD
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Successive Linear Programming (SLP) [R1]
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MIN  Piecewise linear cost function with penalty factors
(5.t Line Current Flows A
r k k .7 k k
lk(n,m) = Re(Yl,lv + )71,2vm)’ lk(m,n) = Re(YZ,lvn + Y2,2vm) Vk €k
j _ k k .j _ k k
\lli(n,m) Im(Yl,lv + Yl,va )’ lli(m,n) _ Im(YZ,lvn + Y2,2vm) Vk = K)
4 ) )

Network Current Balancing
+ Gjhvr

n

o/

(X2
(X

k(n,) lk(n,m)

l'j
k(n,) k(n,m)

—B;hv;{)zO Vne N

+GIVI+ BV ) =0 VneN

Nodal Power Injections
First-order Taylor series

J

D Generator Limits

[Nodal Voltage Magnitude Limits\

Outer approximation,
First-order Taylor series,
Step-size bounds,
Tangential cutting planes, &
Inequality constraints with
slack variables

\_ j

Inequality constraints with
slack variables

~

" Thermal Line (Flowgate) Limits N
Set reduction, Outer approximation,
First-order Taylor series,
Tangential cutting planes, &
Inequality constraints with

slack variables

G
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(1) A KKT point to the ACOPF is found

(2) The SLP optimal solution is ACOPF
feasible but not optimal

= Still a useful solution; may be better than a
DCOPF with AC feasibility or decoupled OPF

solution
(3) The SLP optimal solution is ACOPF
infeasible

= Active penalties present

= Solution may be useful depending upon
whether the violated limits are “soft” or
“hard”

(4) The SLP is infeasible

= The ACOPF may have no solution
= The SLP requires a better initialization
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SLP Infeasible
(4)

ACOPF
Optimal

(1)

ACOPF
Feasible

(2)

SLP Feasible
(3)

§ Extends Theorem 10.3.1 of Bazaraa et al. (2006)




Time Complexity Performance

Best-Case Simulations

O (IN1P)
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All Converged Simulations

Baseline D R? RMSE (s) D R? RMSE (s)
NLP/KNITRO 1.42 0.83 1.46 1.47 0.82 1.40
NLP/IpopPT 1.13 0.95 0.60 1.34 0.97 0.50
SLP/CPLEX 0.97 0.99 0.20 1.01 0.98 0.33
SLP /Gurobi 1.01 0.99 0.21 1.03 0.98 0.33
Thermally Constrained
NLP/KNITRO 1.39 0.88 1.13 1.39 0.89 1.08
NLP/IpoPT 1.11 0.98 0.36 1.22 0.97 0.50
SLP/CPLEX 0.99 0.99 0.17 1.00 0.98 0.31
SLP /Gurobi 1.06 0.99 0.23 1.05 0.97 0.36

= Running time increases linearly with the network size (p=1
corresponds to a linear algorithmic scaling) for the SLP algorithm

= Potentially applicable in the strict time frames of the real-time

markets
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