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TODAY’S	PRACTICE



§ Operational	Challenges
§ Committing	Least	Cost	+	Maintaining	Reliability
§ Out-of-Merit	Reliability	Commitments
§ Improving	convergence	between	day-ahead	and	real-time	prices

§ Algorithmic	Challenges
§ Accounting	for	reliability	needs	in	dispatch	and	pricing	optimization
§ Better	physical	representation	of	the	generating	units	and	underlying	

network

Issues	in	Day-Ahead	Markets
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Unit	Commitment	in	the	Day-Ahead	Market
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Current Practices Proposed Approach
UC/Security-Constrained UC
• Copper-plate (no network/single node)
• Ignores congestion; requires cutsets to 

proxy capacity limits on network
• Most tractable

SCUC DCOPF
• Real power flows only (proportional to 

current)
• BΘ (full) or PTDF (compact) approach

Extensions:
• Accounts for losses 
• Nomograms/cutsets to proxy reliability 

requirements

SCUC ACOPF
• Co-optimizes real and reactive power 

dispatch
• Accounts for commitments needed for 

blackstart service, reactive support, 
voltage support, and interface control

• Nonlinear, nonconvex on meshed 
networks



The	link	between	physics	and	prices
§ Locational	marginal	pricing	(LMP)	is	the	spot	price	of	electricity
§ Dual	variable/Lagrange	multiplier	(λn)	to	real	power	balancing	at	all	buses								

The	LMP	incorporates	the	marginal	cost	of	supplying	the	next	MW	of	load	
for	a	given	location	in	time;	includes	
1.	marginal	unit	cost,
2.	cost	of	network	congestion	(due	to	thermal	line	limits),	and
3.	cost	of	real	power	losses	on	the	network	

⇡ |ṽn|
X

m2N
|ṽm| (Bnm✓nm)
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CONTRIBUTIONS



CONTRIBUTIONS
OVERVIEW



UC+ACOPF:	MINLP

AC Network Limits
Real power balancing
Reactive power balancing
Voltage magnitude bounds
Thermal line limits
Spinning reserves

Apparent Power Production Limits §

Max/min real/reactive power generation 
Ramp up/down rates on real power
Minimum up/down time

§ Extends Morales-España, Latorre, and Ramos, “Tight and compact MILP formulation for the thermal unit commitment 
problem,” IEEE Trans. on Power Syst., vol. 28, no. 4, pp. 4897–4908, 2013.

System Data
Nodal voltage limits

Reserve requirements
Real/reactive power load

Transformer tap ratio and phase-shifters
Thermal line limits and line R/X/B

Shunts

Generator Data
Synchronous condensers
T0 state and startup lags

Minimum up/down time
Ramp up/down limits

Startup/shutdown ramp limits
Min/max real/reactive power limits

Min Production Costs + Startup Costs + No-Load Costs

subject to

9



§ Polar	Power-Voltage	Power	Flow	Formulation	(PSV)

§ Rectangular	Power-Voltage	Power	Flow	Formulation	(RSV)

§ Rectangular	Current	Injection	Formulation	(RIV)

Nodal	Power	Balancing	is	Nonconvex
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MINLP	solved	by	Outer	Approximation§(OA)

𝑓(𝑥),
𝑔 𝑥 ≤ 0,
𝑥 ∈ 𝑋,
𝑥𝑖 ∈ ℤ, ∀𝑖 ∈ 𝐼

§ Outer Approximation Algorithm (Duran and Grossman, 1986); Graphics (Belotti et al., 2013)

/
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒4
𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜

𝑓:ℝ? → ℝ, 𝑔:ℝ? → ℝAare twice continuously differentiable functions,
𝑋 ⊂ ℝ?	is a bounded polyhedral set, and
𝐼	 ⊆ {1, … , 𝑛} is the index set of integer variables
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CONTRIBUTIONS
LOCAL	SOLUTION	METHOD



MIN Piecewise linear cost function with penalty factors

Line Current Flows

Network Current Balancing  

s.t.
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               Nodal Voltage Magnitude Limits
Outer approximation,

First-order Taylor series,
Step-size bounds,

Tangential cutting planes, &
Inequality constraints with 

slack variables

Nodal Power Injections
First-order Taylor series

Generator Limits
Inequality constraints with 

slack variables

Thermal Line (Flowgate) Limits
Set reduction, Outer approximation,

First-order Taylor series,
Tangential cutting planes, & 
Inequality constraints with 

slack variables

Successive	Linear	Programming	(SLP)	[R1]
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(2) 

ACOPF  
Feasible 

(1) 

ACOPF  
Optimal 

(3) 
SLP Feasible 

(4) 
SLP Infeasible 

SLP	Convergence	Properties§

(1)		A	KKT	point	to	the	ACOPF	is	found
(2)	The	SLP	optimal	solution	is	ACOPF	
feasible	but	not	optimal
§ Still	a	useful	solution;	may	be	better	than	a	

DCOPF	with	AC	feasibility	or	decoupled	OPF	
solution

(3) The	SLP	optimal	solution	is	ACOPF	
infeasible
§ Active	penalties	present
§ Solution	may	be	useful	depending	upon	

whether	the	violated	limits	are	“soft”	or	
“hard”

(4) The	SLP	is	infeasible
§ The	ACOPF	may	have	no	solution
§ The	SLP	requires	a	better	initialization

§ Extends Theorem 10.3.1 of Bazaraa et al. (2006)
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Time	Complexity	Performance

§ Running	time	increases	linearly	with	the	network	size	(p=1	
corresponds	to	a	linear	algorithmic	scaling)	for	the	SLP	algorithm

§ Potentially	applicable	in	the	strict	time	frames	of	the	real-time	
markets

Best-Case Simulations All Converged Simulations
Baseline p R2 RMSE (s) p R2 RMSE (s)

NLP/KNITRO 1.42 0.83 1.46 1.47 0.82 1.40
NLP/Ipopt 1.13 0.95 0.60 1.34 0.97 0.50
SLP/CPLEX 0.97 0.99 0.20 1.01 0.98 0.33
SLP/Gurobi 1.01 0.99 0.21 1.03 0.98 0.33

Thermally Constrained
NLP/KNITRO 1.39 0.88 1.13 1.39 0.89 1.08
NLP/Ipopt 1.11 0.98 0.36 1.22 0.97 0.50
SLP/CPLEX 0.99 0.99 0.17 1.00 0.98 0.31
SLP/Gurobi 1.06 0.99 0.23 1.05 0.97 0.36

⇥ (|N |p)
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