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The Agenda

e Stochastic Programming Technology
— Uncertainty Quantification (UQ) for Operations
— Quick Demo
— UQEngines (SAA and SD)
e Economic Dispatch with Simulation
— Economic Dispatch Model
— Wind Simulation
— Stochastic Decomposition and Economic Dispatch Setting
e Results with Hourly and Sub-hourly Simulation
— lllinois Network Data
— Hourly v Sub-hourly Ramping
— UQusing SAA (Extensive Formulation) and SD
e Conclusions
— Main Take Away
— Other On-Going Work
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UQ for Operations

e Two products serve two types of demands:
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UQ for Operations
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SP for Operations
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UQ Demo

e 20 products, Normally distributed demands

o
$400 "S -

\

Stochastic Decomposition:

. \\\ Sa . Simultaneously
-% \\§ a Optimize + Monte Carlo
$20 S- 41A

Wholesaler Retailer Demand

Note: We do not commit to a sample size before “seeing” the instance. We try to
recognizes optimality “on the fly”, thus avoiding unnecessarily large instances.
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UQ Engines: SAA and SD

e Sample Average Approximation (Linderoth, Shapiro, Wright; Annals of OR,
2006):
— Choose a sample size;
— Optimize the sampled problem;
— Repeat M times (say M ~ 7 —10)
— Sampling Strategy: Latin Hypercube Sampling.
— Computing Platform: Computing Grid (100s of Desktop PCs)

e Stochastic Decomposition (Sen, Encyclopedia of OR/MS (Springer, 2012)):
—> * Sample a small number of scenarios (say 1 or more);
* Update a value function approximation;
e Optimize the value function approximation (plus proximal term);
<—— o Repeat until stopping rule is satisfied.
— Repeat M times (say M = 30).
— Sampling Strategy: Uses Common Random Numbers, and find sample size for
each replication

— Computing Platform: Laptop (Mac Book Air)
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UQ Comparisons of SAA and SD using SSN

Sample Average Approximation (Linderoth et al 2006)

Gap

SAA-100 8.90(+/-0.36)  10.542 (+/-0.021) 2.023
SAA-500 9.87 (+/-0.22)  10.069(+/- 0.026) 0.445
SAA-1000 9.83(+/-0.29)  9.996 (+/- 0.025) 0.445
SAA-5000 9.84 (+/-0.10)  9.913 (+/- 0.022) 0.195

Stochastic Decomposition (Sen 2012, see also Higle and Sen 1994, 1999)

SD Avg. Sample Lower Bound Upper Bound Pessimistic
(St.Deviation) Gap

2212.5 (370.3) 9.76 (+/-0.16)  9.91 (+/- 0.05) 0.36
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min  Generation Cost + Expected recourse value

s.t. Generation ramping limits

Generation capacity limits

Master Problem

h({G},w)=min  Fast Operating reserves/ramping/buying-selling costs

s.L. Network flow balance equations

Line power flow
Line capacity limits
Wind Availability
Storage limits

Recourse Value Function

Bounds on operating reserves/ramping
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VAR(p) : vy & A+ Ay, ?'it

v

Deterministic regressors White noise

N - : -] /- Segment Adaptive VAR \
' W’“’W‘*WJW * Captures spatio-temporal

? WW\"W\W correlations

?ﬁ : * Information criterion (Bayes-

: WWMW Schwartz) based model selection

! e Validated from residual
Preprocess > VAR(p) whiteness, stability and

\consistency. /
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master Problerm Subproblem

SMPS

Stoch file

Wind Simulator

Vector Auto-Regression

min C—Gh + E{¢(Gp, %n})
s.t. Gpelg

U(Gp.xp) = min gy,
s.t. Wy, = ﬁ(xh) — TGy
Y, € Fy

L
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Ancillary Services

Commercial Load
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The Data: lllinois Network (12 Wind Farms)
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UQ Results: Hourly vs. Sub-hourly

Conventional Generation Planning:

Hourly Planning Sub-hourly Planning

Total generation (MWh) 8.8812 x 104 9.2073 x 104
Generation cost (S) 6.9862 x 10° 7.2614 x 10°

Operating Costs/penalties:
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UQ Results: Hourly vs. Sub-hourly
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UQ performance: Hourly & Sub-hourly

Processor: Inter Core i7-2600 @ 3.4GHz x 8; Platform: Ubuntu 12.04(64 bit)

Hourly Planning Sub-hourly Planning
Scenarios | SAA-10 SAA-25 D SAA-10 SAA-25 D
SOLVER CPLEX (Def) | CPLEX (Def) CPLEX (Def) | CPLEX (Def)
522 522
Rows 52260 130650 4443 274410 844275 26658
261 261
Columns 58460 140150 ccac 337709 686025 33510
RV’s - - 12 - - 72
Iterations | 54494 256137 455720 | 682372*
Time (s) 341.13 5016.05 31237.52 | 78939.23*

*Run aborted
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UQ performance: Hourly & Sub-hourly

Processor: Inter Core i7-2600 @ 3.4GHz x 8; Platform: Ubuntu 12.04(64 bit)

Hourly Planning Sub-hourly Planning
CPLEX (Def) CPLEX(Def) SD CPLEX(Def) CPLEX(Def) SD
10 Scenarios 25 Scenarios 10 Scenarios 25 Scenarios
522 522
Rows 52260 130650 4443 274410 844275 26658
261 261
I
Columns 58460 140150 5585 337709 686025 33510
RV’s
(Sample) - - 12 (913) - - 72
Iterations 54494 256137 913 455720 682372*
Time (s) 341.13 5016.05 446.06 31237.52 | 78939.23*

*Run aborted
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UQ performance: Hourly & Sub-hourly

Processor: Inter Core i7-2600 @ 3.4GHz x 8; Platform: Ubuntu 12.04(64 bit)

Hourly Planning Sub-hourly Planning
CPLEX (Def) | CPLEX(Def) SD CPLEX(Def) | CPLEX(Def) SD
10 Scenarios 25 Scenarios 10 Scenarios 25 Scenarios
522 522
Rows 52260 130650 4443 274410 844275 26658
261 261
Columns 58460 140150 5585 337709 686025 33510
RV’s
- - 12 (91 - - 2 (151
(sample) (913) 72 (1513)
Ilterations 54494 256137 913 455720 682372* 1513
Time (s) 341.13 5016.05 446.06 31237.52 | 78939.23* | 17941.55

*Run aborted
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Main Take Away

e Can SP Technology Provide Realistic Decision Support for
Hourly Dispatch with Hourly Wind Simulation?

— Yes, absolutely!

e Can SP Technology Provide Realistic Decision Support for
Hourly Dispatch with Sub-hourly Wind Simulation?

— Yes, with a bit of tuning! (e.g. Upper and Lower Bounds are
within 0.1% of each other. Do we need that? NO!)

 |Increased Computing Power =>

Time to Combine Optimization + Statistics
— (Not to Abandon it!)
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Combining SP and Optimal Control

master Problerr“

Coarse time-scale
decisions
15t Stage Stochastic

Subproblem

& 41 Wind Simulator
Vector Auto-Regression

!

Decomposition

- /

Fine time-scale decisions

(Multistage controller)

{xt}

/" Recourse

Response

2" Stage

Stochastic
Decomposition/

Vi(G)
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Stochastic UC as Two-stage SMIP

e Binary First Stage (Start-up, ramping ...)
e Continuous Second-Stage (LPs)

e Algorithm (Uses General Stochastic MIP Method)

— Use UQ with Stochastic Decomposition for Two-stage SLP

— Correct Fractional Solutions Using Strong Relaxations for
First-stage SIP
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