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UQ for Operations 
• Two products serve two types of demands:  
• xj are order quantities to be determined.  But,  
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SP for Operations 
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Scenarios 
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UQ Demo 
• 20 products, Normally distributed demands 

 
 

Demand Retailer Wholesaler 
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Note:  We do not commit to a sample size before “seeing” the instance. We try to  
recognizes optimality “on the fly”, thus avoiding unnecessarily large instances. 

Stochastic Decomposition:  
Simultaneously 
Optimize + Monte Carlo 
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UQ Engines: SAA and SD 
• Sample Average Approximation  (Linderoth, Shapiro, Wright; Annals of OR, 

2006):   
– Choose a sample size;  
– Optimize  the sampled problem;  
– Repeat M times (say M ~ 7 – 10) 
– Sampling Strategy: Latin Hypercube Sampling.  
– Computing Platform: Computing Grid (100s of Desktop PCs) 

 

• Stochastic Decomposition (Sen, Encyclopedia of OR/MS (Springer, 2012)):  
• Sample a small number of scenarios (say 1 or more);   
• Update a value function approximation;   
• Optimize the value function approximation (plus proximal term); 
• Repeat until stopping rule is satisfied.  

– Repeat M times (say M = 30).  
– Sampling Strategy:  Uses Common Random Numbers, and find sample size for 

each replication 
– Computing Platform:  Laptop (Mac Book Air) 
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 UQ Comparisons of SAA and SD using SSN 
 

Sample Size Lower Bound Upper Bound Pessimistic 
Gap 

SAA-100 8.90(+/- 0.36) 10.542 (+/-0.021) 2.023 

SAA-500 9.87 (+/-0.22) 10.069(+/- 0.026) 0.445 

SAA-1000 9.83(+/- 0.29) 9.996  (+/- 0.025) 0.445 

SAA-5000 9.84 (+/- 0.10) 9.913 (+/- 0.022) 0.195 

Sample Average Approximation  (Linderoth et al 2006)  

 SD Avg. Sample  
(St.Deviation)  

Lower Bound Upper Bound Pessimistic 
Gap 

2212.5 (370.3) 9.76 (+/- 0.16) 9.91 (+/- 0.05) 0.36 

Stochastic Decomposition  (Sen 2012, see also Higle and Sen 1994, 1999) 
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Generation Cost + Expected recourse value 

Generation ramping limits 
Generation capacity limits 

Fast Operating reserves/ramping/buying-selling costs 

Network flow balance equations 

Line power flow 
Line capacity limits 

Storage limits 
Bounds on operating reserves/ramping 

Wind Availability 



Epstein Department of ISE 

Economic Dispatch 
Re

co
ur

se
 V

al
ue

 F
un

ct
io

n 
M

as
te

r P
ro

bl
em

 



Epstein Department of ISE 

Numerical Wind Prediction 
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Wind Simulation: Vector Auto-regression 

Preprocess VAR(p) 

Deterministic regressors White noise 

• Segment Adaptive VAR 
• Captures spatio-temporal 
correlations 
• Information criterion (Bayes-
Schwartz) based model selection 
• Validated from residual 
whiteness, stability and 
consistency.  
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Simulated Wind Model 
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Stochastic Decomposition (Hourly Simulation) 

Master Problem Subproblem 

h 

Gk 
Vector Auto-Regression 

Wind Simulator 
Stoch file 

SMPS 
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The Economic Dispatch Setting  
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The Data:  Illinois  Network (12 Wind Farms) 

Master: 
• Columns - 261 
• Rows - 522 

Sub-problem: 
• Columns - 33510 
• Rows – 26658 
• Wind farms - 12 
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UQ Results: Hourly vs. Sub-hourly 
Conventional Generation Planning:  

Hourly Planning Sub-hourly Planning 
Total generation (MWh) 8.8812 x 104 9.2073 x 104 

Generation cost ($)  6.9862 x 106 7.2614 x 106 

Operating Costs/penalties: 
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UQ Results: Hourly vs. Sub-hourly 

Histogram of operating reserve requirement under the two plans 



Epstein Department of ISE 

 UQ performance: Hourly & Sub-hourly 

Scenarios 
SOLVER 

Hourly Planning Sub-hourly Planning 
SAA-10 

CPLEX (Def) 
SAA-25 

CPLEX (Def)  SD SAA-10 
CPLEX (Def) 

SAA-25 
CPLEX (Def)  SD 

Rows 52260 130650 522 
 4443 274410 844275 522 

26658 

Columns 58460 140150 261 
5585 337709 686025 261 

33510 

RV’s - - 12 - - 72 

Iterations 54494 256137 455720 682372* 

Time (s) 341.13 5016.05 31237.52 78939.23* 

*Run aborted 

Processor: Inter Core i7-2600 @ 3.4GHz x 8; Platform: Ubuntu 12.04(64 bit) 
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 UQ performance: Hourly & Sub-hourly 

Hourly Planning Sub-hourly Planning 
CPLEX (Def) 
10 Scenarios 

CPLEX(Def) 
25 Scenarios  SD CPLEX(Def) 

10 Scenarios 
CPLEX(Def) 
25 Scenarios  SD 

Rows 52260 130650 522 
 4443 274410 844275 522 

26658 

Columns 58460 140150 261 
5585 337709 686025 261 

33510 

RV’s 
(Sample) - - 12 (913) - - 72 

Iterations 54494 256137 913 455720 682372* 

Time (s) 341.13 5016.05 446.06 31237.52 78939.23* 

*Run aborted 

Processor: Inter Core i7-2600 @ 3.4GHz x 8; Platform: Ubuntu 12.04(64 bit) 
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 UQ performance: Hourly & Sub-hourly 

Hourly Planning Sub-hourly Planning 
CPLEX (Def) 
10 Scenarios 

CPLEX(Def) 
25 Scenarios  SD CPLEX(Def) 

10 Scenarios 
CPLEX(Def) 
25 Scenarios  SD 

Rows 52260 130650 522 
 4443 274410 844275 522 

26658 

Columns 58460 140150 261 
5585 337709 686025 261 

33510 

RV’s 
(Sample) - - 12 (913) - - 72 (1513) 

Iterations 54494 256137 913 455720 682372* 1513 

Time (s) 341.13 5016.05 446.06 31237.52 78939.23* 17941.55 

*Run aborted 

Processor: Inter Core i7-2600 @ 3.4GHz x 8; Platform: Ubuntu 12.04(64 bit) 
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Main Take Away  

• Can SP Technology Provide Realistic Decision Support for 
Hourly Dispatch with Hourly Wind Simulation? 
– Yes, absolutely! 

• Can SP Technology Provide Realistic Decision Support for 
Hourly Dispatch with Sub-hourly Wind Simulation? 
– Yes, with a bit of tuning!  (e.g. Upper and Lower Bounds are 

within 0.1% of each other.  Do we need that?  NO!) 
 

•   Increased Computing Power =>  
 Time to Combine Optimization + Statistics  

– (Not to Abandon it!)  
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Combining SP and Optimal Control 

Master Problem 

Coarse time-scale 
decisions 

1st Stage Stochastic 
Decomposition 

Subproblem 

Vector Auto-Regression 

Wind Simulator Recourse 
Response 

2nd  Stage 
Stochastic 

Decomposition 

Fine time-scale decisions 
(Multistage controller) 

Approximate Dynamic Programming 

Gk 
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• Binary First Stage (Start-up, ramping …) 
• Continuous Second-Stage (LPs) 
 
• Algorithm (Uses General Stochastic MIP Method) 

– Use UQ with Stochastic Decomposition for Two-stage SLP 
– Correct Fractional Solutions Using Strong Relaxations for 

First-stage SIP 

Stochastic UC as Two-stage SMIP 
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