LARGE-SCALE OPTIMAL POWER FLOW WITH NO GUARANTEE ON FEASIBILITY

Sylvain Mouret, A. Renaud, M. Ruiz, P. Girardeau - Artelys J. Maeght, S. Fliscounakis, P. Panciatici - RTE

4 General framework

- iTesla, large-scale OPF models with no guarantee on feasibility, type of model (intensity limits, phase-shifting transformers)
- Numerical experiments on real data from European TSOs

Problems encountered by solving a direct approach

- Difficulties to converge
- Not possible to know the status of the solution and characteristics of the network state

Proposed solution: a progressive filtering process

- The direct approach is replaced by a multi-step solution process
- Each step amounts to solving an easier problem

Computational experiments

GENERAL FRAMEWORK

- ITesla is a pan-European R&D project that aims at assessing the security of a large scale power network by means of security rules computed offline
 - Coordinated by RTE (Réseau de Transport d'Electricité)
 - Includes 6 European TSOs and 13 R&D companies
 - Official website: http://www.itesla-project.eu/

Two major platforms developed

- 1. Offline: explore the network state space to draw the separation between stable and unstable states (using data mining techniques)
- 2. Online: evaluate computed security rules on the current network situation and provide recommendations to TSOs

Offline platform

Sampling of network states

Infeasible states detected through steadystate optimization

Unstable states detected through dynamic optimization

Data mining on the results

Q

Every week

Online platform

Data acquisition from European TSOs (24 hour forecasts)

Data merging

Security assessment

Recommendation for the operators

Every day

■ Here we focus on the offline task

- Monte Carlo simulations provide us with many network states (~10,000)
- We want to filter out the ones that are not feasible

■ The mathematical model is a modified AC-OPF

- Polar PQV formulation
- Limits on voltage magnitudes
- Maximum intensity levels on lines (nonlinear inequality constraints)
- Limits on production levels
- Kirchhoff law at each node (nonlinear equality constraints)

4 When necessary, fixed injection can be modified

- Positive fixed injection at a node can be decreased
 - Production curtailment of fatal production unit (PC)
- Negative fixed injection at a node can be increased
 - Load shedding (LS)

■ Use of specific absolute tolerance on each constraint

- Limits on voltage magnitude
- Maximum limit on intensity level
- Balance of active and reactive power at each node
- Limits on active and reactive level of production units

DESCRIPTION OF THE DATASET

- A Network data comes from real data (recollection of network data from several European TSOs)
 - > 7000 nodes
 - > 8000 lines
 - ~ 700 production units
- This leads to a large scale nonlinear optimization problem
 - The input data has not been verified
 - We have no guarantee that a feasible solution actually exists
- The dataset is composed of 843 test cases which correspond
 to a whole week of real data from European TSOs

- The goal is to answer the following questions
 - Is the OPF model feasible without **PC** or **LS**?
 - Can the OPF model be made feasible with only **PC**?
 - Can the OPF model be made with both **PC** and **LS**?
- If no LS is needed, PC is used as little as possible
- If needed, LS is used as little as possible, even if this leads to use more PC

DIRECT APPROACH

■ The objective is to minimize load shedding and production curtailment on each node

- $\min LS + 0.1 \cdot PC$
- Reminding that:
 - If no *LS* is needed, *PC* is used as little as possible
 - If needed, LS is used as little as possible, even if this leads to use more PC

The problem is solved directly using

- KNITRO 8.1.1, a state-of-the-art nonlinear optimization solver
- AMPL, a standard modeling language for mathematical optimization

■ KNITRO uses an interior-point method to solve the OPF

- Newton-Raphson + line search descent, projected conjugate gradient, etc.
- The number of interior-point iterations is limited to 200

COMPUTATIONAL RESULTS

- **△** Out of 843 test cases
 - 360 test cases reached the iteration limit
- The feasibility assessment is based on the last solution iterate

REMARKS ON THE DIRECT APPROACH

- When the maximal number of iterations is reached, no conclusion can be made on the test case
 - The solution point may be infeasible while the test case actually is feasible
 - The solution point may be feasible with positive **PC** or **LS**, while a solution with no **PC** or **LS** actually exists (and we would like to find it)
- If the test case if found infeasible within the iteration limit, the origin of the infeasibility remains unclear

PROGRESSIVE FILTERING APPROACH

- **4** A progressive filtering approach has been developed to achieve the following goals:
 - gain stability in terms of convergence and CPU usage
 - obtain more detailed information on the reasons why a network state is infeasible:
 - Can we make it feasible by curtailing some production at specific network nodes?
 - Is it necessary to perform load shedding as well?
 - In which nodes should the power injection be modified?

PROGRESSIVE FILTERING

- The maximum limits on intensity levels make the problem much harder to solve
 - Main reason: they act as a capacity constraint on line power flows
 - All models solve within 10 seconds without such limits
 - Production targets and demands are usually well balanced
- A Relaxing the power balance constraints tends to decrease the power flow needed on lines
 - This tends to decrease the current intensity level : $|I|^2 = \frac{|S|^2}{|V|^2}$
- Thus, slack variables are applied to active and reactive power balances only, as it is sufficient to make the model feasible
 - $slack_P$ on active power balances
 - $slack_O$ on reactive power balances

DESCRIPTION OF THE APPROACH

- The progressive filtering approach is applied twice
 - without current intensity levels
 - with current intensity levels
- **2** Each step of the filtering procedure has a dedicated objective function and may or may not use slack variables
- **2** Each problem must be solved within less than 100 iterations
- The localization of PC or LS is only perform when the maximum limits on intensity level are enforced
 - Intensity limits have a great impact of the location of **PC** and **LS**

STEPS WITHOUT INTENSITY LIMIT

STEPS WITH INTENSITY LIMIT

COMPUTATIONAL RESULTS

- About 50 minutes of total CPU time is saved over the 843 test cases
 - Direct approach: 8 hours 47 minutes
 - Progressive filtering approach: 7 hours 58 minutes
- However, some test cases (not feasible without **PC** or **LS**) are solved with high CPU times
 - More time is spent in order to recover detailed infeasibility information

SOLUTION STATUSES

21

Progressive filtering Solution status

- The direct approach missed:
 - 253 instances that are found feasible without PC
 - 123 instances that are found feasible with or without PC
- The progressive approach provides more information on infeasibilities:
 - issues with active/reactive power balance, issues with intensity limits
 - localization of such difficulties

Reasons for infeasibilities:

- About 1/3 of infeasible models can be made feasible by using LS
- About 1/2 of infeasibilities are due to reactive power balance issues
- About 1/6 of infeasibilities are due to active power balance issues

The average CPU time per step is

- 4.5 seconds for power balance slack minimization without intensity limits
- 13.5 seconds for power balance slack minimization with intensity limits
- 32.0 seconds for PC minimization (when used)
- 44.4 seconds for *LS* minimization (when used)

Progressive filtering Solution status

ON THE INTENSITY LIMIT

The maximum intensity level constraint can be expressed in a quadratic form or in a rational form

$$|I|^2 \le \overline{I}^2 \text{ or } \sqrt{|I|^2} \le \overline{I}$$

- The rational formulation scales better and leads to better performance
 - Demonstrated by an experiment on a reduced dataset of 27 test cases

Rational vs. quadratic intensity formulation

CONCLUSION

- A progressive filtering procedure has been developed in order to detect infeasibilities for large-scale OPF problems
- The procedure is tested on a whole week of real data from European TSOs (843 test cases)
 - The filtering process is able to solve more instances than the direct approach
- The KNITRO performance was greatly improved by
 - scaling the model
 - using constraint-specific feasibility tolerances
 - avoids unnecessary long convergence runs to achieve default tolerances
 - new feature that will be available in the next KNITRO release

