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Opening remarks 

• We describe a new way to think about Unit 
Commitment (UC) under uncertainty 
– We describe optimal commitment strategies not 

just optimal unit commitment 
– This talk is about concepts, not algorithms 

With better technology, can we solve a better problem? 



Our objectives 

• To show that conventional UC does not lead 
to optimality under uncertainty 
– We use a trivially simple example 
– Optimality requires strategies, not schedules 

• To outline a modified LR solution method 
– Options not considered include modifications to 

Mixed Integer Programming (MIP) methods 



Stochastic Unit Commitment 

• Consider using Lagrangian Relaxation (LR)  
– Since energy and reserve prices are outputs of 

UC, start with initial guesses of prices and their 
probability distributions 

• Refine price estimates and their probability 
distributions until convergence is reached  



Uncertainty matters: an example 

• A 4-generator energy-only 2-scenario case 
• Compare three UC methods 

1. Deterministic commitment using expected 
values 

2. Commitment based on Monte Carlo scenarios 
3. Stochastic dispatch 



The example 
• Three future time periods t=1, 2, 3 
• Four generators (next slide) 
• Demand*: 146 MW, 181 MW, 146 MW 
• Commitment decisions to be made at t=0 

– Find optimal commitment and dispatch strategy 
at t=0 to minimize expected total cost over all 
periods and all scenarios 

 

(*) In this example the demand is certain 



Example generator features 

• Generator B, 100 MW, fixed schedule 
• Generator G, 15-40 MW, $33/MWh, startup $650, 

minimum up time 2 periods, initially offline 
• Generator P, 60 MW, $50/MWh 
• Generator W, 10 or 50 MW, negative $25/MWh* 

– W capability is perfectly correlated, i.e., it can produce 
up to either 10 MW or 50 MW across all periods 

• But we must wait for t=1 to find out…  

(*) The capability of W is uncertain at t=0 



1. Deterministic commitment 

• Assume W produces 30 MW all 3 periods 
• Dispatch is:  

– Period 1: B=100, G=16, P=off, W=30. Price: $33 
– Period 2: B=100, G=40, P=11, W=30. Price: $50 
– Period 3: B=100, G=16, P=off, W=30. Price: $33 

• Solution commits G at t=0 (wrong) 

What happens when W=10 or when W=50? 



2. Monte Carlo Scenarios 

• For W =10: 
– G=[36,40,36], P=[0,31,0], W=[10,10,10], p=[$33, $50, $33] 

• For W =50: 
– G=[0,0,0], P=[0,31,0], W=[46,50,46], p=[-$25, $50, -$25] 

• G does not start because its 2 hour minimum up time; 
losses in either period 1 or 3 negate profits in period 2 

• Monte Carlo done this way is incorrect 
because for each scenario, the future is certain 

B=100 all 3 periods, either scenario 



3. Optimal Commitment Strategy 

• At t=0, do not commit G 
• At t=1, commit G conditionally 

– If W=10 at t=1, commit G: G=[0,40,36], 
W=[10, 10, 10], P=[36,31,0], p=[$50, $50, $33]  

– If W=50 at t=1, do not commit G: G=off, 
W=[46, 50, 46], P=[0,35,0], p=[-$25, $50, -$25] 

B=100 all 3 periods, either scenario 



Period B G P W D $ 
1 100 16 0 30 146 33 
2 100 40 11 30 181 50 
3 100 16 0 30 146 33 D

et
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1 100 36/0 0/0 10/46 146 33/-25 
2 100 40/0 31/31 10/50 181 50/50 
3 100 36/0 0/0 10/46 146 33/-25 

M
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1 100 0/0 36/0 10/46 146 50/-25 
2 100 40/0 31/31 10/50 181 50/50 
3 100 36/0 0 10/46 146 33/-25 O
pt

im
al

 
St

ra
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gy
 

Correlation between periods need not be 100% for solution to be valid 



Verifying the Solution 

• Optimize G’s profits given two equally probable 
price forecasts at t=0: 
– Either price = [$50, $50, $33] or price = [-$25, $50, -$25] 

• If G commits at t=0 
– G’s dispatch would be [40, 40, any] for scenario 1 and 

[15, 40, 0] for scenario 2 
– Profits = $710 for scenario 1 and -$840 for scenario 2; 

thus, expected profits are negative 
– Therefore it is not optimal for G to commit at t=0 



Comments about the example 

• The optimal commitment is a strategy that is 
conditional on the state of the world 

• Many random scenarios can be handled (we 
use the trivially simple case of two scenarios) 
– Scenarios should consider demand uncertainty, 

correlation between output of wind between time 
periods, forced generator outages, etc. 

 



Stochastic Unit Commitment:  
Possible Approaches 

• Brute force Monte Carlo 
• Modified Lagrangian Relaxation (LR) 

– Or perhaps modified Mixed Integer 
Programming (MIP) – not explored here 



Stochastic Unit Commitment by LR 

• We suggest an adaptation of LR 
• The optimal solution is characterized by prices and 

their probability distribution, and by generator 
commitment and dispatch strategy for each 

• At the optimum: 
– Expected total costs (over all time periods and uncertainty 

scenarios) are minimized 
– For each generator, expected profits are maximized 

 



Traditional Lagrangian Relaxation 

• Energy 
• Regulating Reserves 
• Spinning Reserves 
• Supplemental Reserves 
• Backup Reserves 
for each period 1,2,..,T  
     

 
Prices 
• Energy 
• Regulating Reserves 
• Spinning Reserves 
• Supplemental Reserves 
• Backup Reserves 
for each period 1,2,..,T 

Generator 1 

Self-commitment  
(maximize profits) Aggregate Schedules 

       Of Energy and Reserves 

Self-commitment  
(maximize profits) 

Self-commitment 
(maximize profits) 
Generator 2 

Generator N 

Maximize profits over T periods 

Feedback Loop to Adjust Prices 
(ensure that dispatch satisfies system requirements) 



Traditional LR (step 1) 

• Use prices as intermediate variables to 
decouple commitment among generators 
– Given prices of energy and reserves, produce a 

profit-maximizing schedule for any generator 
using backward DP 

• Find profit-maximizing schedules for each period 
and for each generator 

– This yields generation schedules for each period 

 



Traditional LR (step 2) 
• If aggregate schedules from step 1 differ from 

energy and reserve requirements in any period, 
adjust prices and repeat step 1 
– The price is adjusted through gradient search 
– Caveats: 

• Convergence can be unstable 
• Dual solution may not be feasible 
• Near degeneracy of solutions 
• Issues often handled by heuristics during the final iterations 



Prices and probability distribution 

Self-commitment Under Uncertainty 

Optimal Generator strategy 

Demand 

Other Uncertain Parameters 

LR under uncertainty 

Heuristics 

Feedback Loop 



The proposed modified LR  

• Part 1: Self-commitment 
– Self commitment must consider uncertainty 

• “Self-commitment” can be done by the system operator 

– The result is a strategy, not a fixed schedule 
• Part 2: Feedback Loop 

– Prices are not just prices, they are price distributions 
– They are adjusted based on mismatch between 

aggregate schedules and aggregate demand, and based 
on uncertainty parameters 



Optimal self-commitment strategies  

• There is an optimal strategy that a generator 
can follow to optimize its expected profits 
– A “self-commitment” optimal strategy differs 

from a commitment based on certainty of prices 
• The problem is solved using nested backward 

dynamic programming 
 
The problem can be solved by the ISO on behalf of each generator 

(i.e, “self-commitment” is a bit of a misnomer) 
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Generator-level decision issues 

• Prices are uncertain  
• How much to allocate to each market? 

– Energy or various types of reserves 
• Operational constraints 
• Obtain estimates of profits and losses 
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Cost Characteristics 

• Generator costs can include: 
– Incremental or marginal costs 
– Startup/shutdown costs 
– No-load costs 
– Ramping costs 

• Cost may be non-convex because of: 
– Startup and shutdown costs 
– “Valve points” 
– Declining marginal costs 
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Generator Operational Constraints 
• MW limits on energy and reserves 
• Sum of energy and reserve MWs limits 
• Inter-temporal constraints 

– Minimum up/down times 
– Startup delays 
– Multi-period emissions or energy constraints 
– Ramping rate limits 
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Generator-level decisions 

• Generators decisions must consider profits 
over many periods 
– Are expected revenues > expected costs? 

• For each period, decisions include: 
– Startup/Shutdown? 
– Ramp up/down next hour? 
– Offer reserves or energy? 

• Or some of each? 



Reasons for price variability 

• Uncertainty in demand 
– Weather and non-weather related 

• Generation output uncertainty 
– Forced outages 
– Wind uncertainty 

• Transmission outages  
– Contingency constraints and congestion 
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Handling Price Uncertainty 
• Use discrete price states (High/Medium/Low) 
• Determining optimal commitment strategy is 

similar to determining when to exercise an option 
– When to commit, when to sell reserves, etc. 

• Price correlation issues: 
– Are prices correlated between time periods? 
– Are prices correlated between markets? 



Locational factors 

• Every generator sees a unique price 
distribution for energy (and reserves) as a 
result of congestion and losses 

• Optimal commitment on a generator-by-
generator basis optimizes every generator’s 
value to the system 



Sample energy costs and prices 

 



Results summary 



Profit distribution 



Expected profits and costs by hour 



For more details… 
• See “Optimal Bidding Strategy Under Uncertain Energy and 

Reserve Prices”, PSERC Publication 03-05, April 2003 
– Find optimal self-commitment strategy under uncertainty 
– Is “implemented” by GenOptimizer, a program developed by LRCA 

• GenOptimizer can be used for transmission planning, bidding strategies, 
generator siting analysis, etc. 

• See also Rajaraman, R. and B. Wagner. “Understanding 
Generator Optionality: How the Tools of Stock Brokers and 
Poker Players Are Shaping the World of Generator Self-
Commitment.” The Electricity Journal 17(9):68-77, Nov. 2004 

 



Feedback Loop Description 
• Step 0: Assume energy and reserve price distributions 
• Step 1: Get optimal UC strategies for each generator 

– Perfect for parallel computation 
• Step 2: Aggregate schedules and compare to energy 

and reserves system requirements 
– Adjust prices based on mismatch between generation and 

requirements 
• Use Monte Carlo applied to optimal commitment strategies 

• Go to Step 1 if not converged 

Heuristics needed to simplify computations (research required) 



Impact on ISO Markets 

• Most ISOs run one day-ahead UC per day 
• Replace DA UC by a dynamic, rolling, 24-hour 

look-ahead stochastic UC run each hour 
• Update commitment decisions every hour 

– This will result in changes in the DA market, but 
the market will produce better results 



Parting comments 

• We redefine Unit Commitment from “create 
a schedule” to “create a strategy”  
– We suggest using a rolling hourly 24-hour UC 

• We suggest a modified LR method to handle 
price uncertainty 
– Other possibilities include modified MIP 

• The approach is optimal for each generator 
• It is well suited for parallel computation 



 GenOptimizer*: Optimal self-
commitment under uncertainty 

• It implements optimal self-commitment: 
– It finds profit maximizing strategies 
– It can assist in finding optimal bidding strategies 
– It can help assess transmission needs 
– It can help value generation (including wind) 

• It is educational and informative 
(*) Developed by Laurits R. Christensen Associates.   
      For more information contact Brad Wagner at LRCA (brad@caenergy.com) 



Uses of GenOptimizer 

• For optimal self-dispatch under uncertainty 
• For transmission planning assessment 
• For generator bidding strategy optimization 

– In disputes about market power behavior 
• For generator valuation and siting analysis 
• As part of an integrated UC under 

uncertainty as proposed in this talk 



GenOptimizer Inputs 
• Energy and reserve price forecasts 
• Price volatilities 
• Fuel costs 
• Generator heat rate 
• Minimum and maximum energy dispatch constraints 
• Maximum reserve dispatch constraints 
• Likelihood that offered reserve services will be called 
• Start up time of a cold generator vs. a hot generator 
• Minimum down time of a generator 



GenOptimizer Inputs (cont.) 
• Time it takes for a hot generator to become cold 
• Ramping rate of the generator 
• Cost to start a cold generator vs. a hot generator 
• Cost to shut down the generator from a low dispatch vs. a 

high dispatch 
• Banking costs 
• No-load costs 
• Ramping costs 
• Planned generator outages and must-run conditions 
 

Or just about anything an individual generator could care about 
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How to Model State Transitions 

UP 

DOWN 

TRANS 

UP 

DOWN 

TRANS 

Time t Time t+1 

Time t+1 Time t 

Cost = $1000 

Cost=$0 

Cost=$3500 

Cost=$0 

Cost=$0 
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Time 2 

Feasible State Transitions 

UP 

DOWN 

TRANS 

UP 

DOWN 

TRANS 

Time 1 

Time 2 Time 1 

Time 3 

Time 3 

Time 4 

Time 4 

Use Backward DP to solve self-commitment problem 
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How to model ramp rates, startup 
times and inter-temporal constraints 

DOWN 7 

DOWN 2 

DOWN 1 

TRAN 1 

TRAN 2 

TRAN 5 

UP 1 
2 

UP 2 
2 

UP 1 
1 

TRAN 3 

TRAN 4 

UP 1 
3 

UP 2 
3 

DOWN 3 

DOWN 4 

DOWN 5 

DOWN 6 

DOWN 7 

DOWN 2 

DOWN 1 

TRAN 1 

TRAN 2 

TRAN 5 

UP 1 
2 

UP 2 
2 

UP 1 
1 

TRAN 3 

TRAN 4 

UP 1 
3 

UP 2 
3 

DOWN 3 

DOWN 4 

DOWN 5 

DOWN 6 

Time t Time t+1 

Time t+1 Time t 

Models  
ramp rates 

Models  
startup time 

Models  
standby &  

shutdown states 



GenOptimizer Execution 

• Backward Dynamic Programming determines the 
optimal strategy in every time period, generator 
dispatch state, and price level 
– Considers price uncertainty and operational constraints 

• Monte Carlo is used to evaluate the performance 
of the commitment strategy under price volatility. 

• Finds the optimal energy and reserve dispatches 
for given price levels 
 



GenOptimizer Outputs 

• Expected revenue, costs, and profit by hour 
for energy and reserve services 
– Standard deviation of expected profit 

• Distribution of profits 
– Minimum and maximum profit achieved over a 

set of Monte-Carlo runs 
• Analysis of commitment and optimal 

dispatch strategies 
 
 



Time permitting, we will do a short 
demonstration of GenOptimizer 
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