

Optimal Unit Commitment under Uncertainty in Electricity Markets

F. L. Alvarado and R. Rajaraman FERC Workshop June 2013 Washington, DC

With help from Brad Wagner at LRCA

Opening remarks

- We describe a new way to think about Unit Commitment (UC) under uncertainty
 - We describe optimal commitment *strategies* not just optimal unit commitment
 - This talk is about concepts, not algorithms

With better technology, can we solve a better problem?

Our objectives

- To show that conventional UC does not lead to optimality under uncertainty
 - We use a trivially simple example
 - Optimality requires *strategies*, not schedules
- To outline a modified LR solution method
 - Options not considered include modifications to Mixed Integer Programming (MIP) methods

Stochastic Unit Commitment

- Consider using Lagrangian Relaxation (LR)
 - Since energy and reserve prices are *outputs* of UC, start with initial guesses of prices *and their probability distributions*
- Refine price estimates and *their probability distributions* until convergence is reached

Uncertainty matters: an example

- A 4-generator energy-only 2-scenario case
- Compare three UC methods
 - 1. Deterministic commitment using expected values
 - 2. Commitment based on Monte Carlo scenarios
 - 3. Stochastic dispatch

The example

- Three future time periods t=1, 2, 3
- Four generators (next slide)
- Demand*: 146 MW, 181 MW, 146 MW
- Commitment decisions to be made at t=0
 - Find optimal commitment and dispatch *strategy* at t=0 to minimize expected total cost over all periods and all scenarios

(*) In this example the demand is certain

Example generator features

- Generator B, 100 MW, fixed schedule
- Generator G, **15**-40 MW, \$33/MWh, startup \$650, **minimum up time 2 periods**, initially offline
- Generator P, 60 MW, \$50/MWh
- Generator W, 10 *or* 50 MW, negative \$25/MWh*
 - W capability is **perfectly correlated**, i.e., it can produce up to either 10 MW or 50 MW across all periods
 - But we must wait for t=1 to find out...

(*) The capability of W is uncertain at t=0

1. Deterministic commitment

- Assume W produces 30 MW all 3 periods
- Dispatch is:
 - Period 1: B=100, G=16, P=off, W=30. Price: \$33
 - Period 2: B=100, G=40, P=11, W=30. Price: \$50
 - Period 3: B=100, G=16, P=off, W=30. Price: \$33
- Solution commits G at t=0 (wrong)

What happens when W=10 or when W=50?

2. Monte Carlo Scenarios

• For W =10:

- G=[36,40,36], P=[0,31,0], W=[10,10,10], p=[\$33, \$50, \$33]

- For W =50:
 - G=[0,0,0], P=[0,31,0], W=[46,50,46], p=[-\$25, \$50, -\$25]
 - G does not start because its 2 hour minimum up time; losses in either period 1 or 3 negate profits in period 2
- Monte Carlo done this way is **incorrect** because for each scenario, *the future is certain*

B=100 all 3 periods, either scenario

3. Optimal Commitment Strategy

- At t=0, **do not** commit G
- At t=1, commit G conditionally
 - If W=10 at t=1, commit G: G=[0,40,36],
 W=[10, 10, 10], P=[36,31,0], p=[\$50, \$50, \$33]
 - If W=50 at t=1, do not commit G: G=off, W=[46, 50, 46], P=[0,35,0], p=[-\$25, \$50, -\$25]

B=100 all 3 periods, either scenario

110	Period	В	G	Р	W	D	\$
	1	100	16	0	30	146	33
	2	100	40	11	30	181	50
חסרו	3	100	16	0	30	146	33

Monte Carlo	1	100	36 /0	0/0	10/46	146	33 /-25
	2	100	40/0	31/31	10/50	181	50/50
	3	100	36/0	0/0	10/46	146	33/-25

Opumal Strategy	1	100	0/0	36 /0	10/46	146	50 /-25
	2	100	40/0	31/31	10/50	181	50/50
	3	100	36/0	0	10/46	146	33/-25

Correlation between periods need not be 100% for solution to be valid

Verifying the Solution

• Optimize G's profits given two equally probable price forecasts at t=0:

- Either price = [\$50, \$50, \$33] or price = [-\$25, \$50, -\$25]

- If G commits at t=0
 - G's dispatch would be [40, 40, any] for scenario 1 and [15, 40, 0] for scenario 2
 - Profits = \$710 for scenario 1 and -\$840 for scenario 2; thus, expected profits are *negative*
 - Therefore it is not optimal for G to commit at t=0

Comments about the example

- The optimal commitment is a *strategy* that is conditional on the state of the world
- Many random scenarios can be handled (we use the trivially simple case of two scenarios)
 - Scenarios should consider demand uncertainty, correlation between output of wind between time periods, forced generator outages, etc.

Stochastic Unit Commitment: Possible Approaches

- Brute force Monte Carlo
- Modified Lagrangian Relaxation (LR)

 Or perhaps modified Mixed Integer
 Programming (MIP) not explored here

Stochastic Unit Commitment by LR

- We suggest an adaptation of LR
- The optimal solution is characterized by prices and their *probability distribution*, and by generator commitment and *dispatch strategy* for each
- At the optimum:
 - *Expected* total costs (over all time periods and uncertainty scenarios) are minimized
 - For each generator, *expected* profits are maximized

Traditional Lagrangian Relaxation

Maximize profits over T periods

Traditional LR (step 1)

- Use **prices** as intermediate variables to decouple commitment among generators
 - Given prices of energy and reserves, produce a profit-maximizing schedule for any generator using backward DP
 - Find profit-maximizing schedules for each period and for each generator
 - This yields generation schedules for each period

Traditional LR (step 2)

- If aggregate schedules from step 1 differ from energy and reserve requirements in any period, adjust prices and repeat step 1
 - The price is adjusted through gradient search
 - Caveats:
 - Convergence can be unstable
 - Dual solution may not be feasible
 - Near degeneracy of solutions
 - Issues often handled by heuristics during the final iterations

LR under uncertainty

The proposed modified LR

- Part 1: Self-commitment
 - Self commitment must consider uncertainty
 - "Self-commitment" can be done by the system operator
 - The result is a *strategy*, not a fixed schedule
- Part 2: Feedback Loop
 - Prices are not just prices, they are price *distributions*
 - They are adjusted based on mismatch between aggregate schedules and aggregate demand, and based on uncertainty parameters

Optimal self-commitment strategies

- There is an *optimal strategy* that a generator can follow to optimize its expected profits
 - A "self-commitment" optimal strategy differs from a commitment based on certainty of prices
- The problem is solved using nested backward dynamic programming

The problem can be solved by the ISO on behalf of each generator (i.e, "self-commitment" is a bit of a misnomer)

Generator-level decision issues

- Prices are uncertain
- How much to allocate to each market?
 Energy or various types of reserves
- Operational constraints
- Obtain estimates of profits and losses

Cost Characteristics

- Generator costs can include:
 - Incremental or marginal costs
 - Startup/shutdown costs
 - No-load costs
 - Ramping costs
- Cost may be non-convex because of:
 - Startup and shutdown costs
 - "Valve points"
 - Declining marginal costs

Generator Operational Constraints

- MW limits on energy and reserves
- Sum of energy and reserve MWs limits
- Inter-temporal constraints
 - Minimum up/down times
 - Startup delays
 - Multi-period emissions or energy constraints
 - Ramping rate limits

Generator-level decisions

- Generators decisions must consider profits over many periods
 - Are expected revenues > expected costs?
- For each period, decisions include:
 - Startup/Shutdown?
 - Ramp up/down next hour?
 - Offer reserves or energy?
 - Or some of each?

Reasons for price variability

- Uncertainty in demand
 - Weather and non-weather related
- Generation output uncertainty
 - Forced outages
 - Wind uncertainty
- Transmission outages
 - Contingency constraints and congestion

Handling Price Uncertainty

- Use discrete price states (*High/Medium/Low*)
- Determining optimal commitment strategy is similar to determining when to exercise an option
 - When to commit, when to sell reserves, etc.
- Price correlation issues:
 - Are prices correlated between time periods?
 - Are prices correlated between markets?

Locational factors

- Every generator sees a unique price distribution for energy (and reserves) as a result of congestion and losses
- Optimal commitment on a generator-bygenerator basis optimizes every generator's value to the system

Sample energy costs and prices

Results summary

Profit distribution

Expected profits and costs by hour

For more details...

- See "Optimal Bidding Strategy Under Uncertain Energy and Reserve Prices", PSERC Publication 03-05, April 2003
 - Find optimal self-commitment *strategy* under uncertainty
 - Is "implemented" by GenOptimizer, a program developed by LRCA
 - GenOptimizer can be used for transmission planning, bidding strategies, generator siting analysis, etc.
- See also Rajaraman, R. and B. Wagner. "Understanding Generator Optionality: How the Tools of Stock Brokers and Poker Players Are Shaping the World of Generator Self-Commitment." *The Electricity Journal* 17(9):68-77, Nov. 2004

Feedback Loop Description

- Step 0: Assume energy and reserve price distributions
- Step 1: Get optimal UC strategies for each generator
 Perfect for parallel computation
- Step 2: Aggregate schedules and compare to energy and reserves system requirements
 - Adjust prices based on mismatch between generation and requirements
 - Use Monte Carlo applied to optimal commitment strategies
- Go to Step 1 if not converged

Heuristics needed to simplify computations (research required)

Impact on ISO Markets

- Most ISOs run one day-ahead UC per day
- Replace DA UC by a dynamic, rolling, 24-hour look-ahead stochastic UC run each hour
- Update commitment decisions every hour
 - This will result in changes in the DA market, but the market will produce better results

Parting comments

• We redefine Unit Commitment from "create a *schedule*" to "create a *strategy*"

– We suggest using a rolling hourly 24-hour UC

• We suggest a *modified* LR method to handle price uncertainty

– Other possibilities include modified MIP

- The approach is optimal for each generator
- It is well suited for parallel computation

GenOptimizer*: Optimal selfcommitment under uncertainty

- It implements optimal self-commitment:
 - It finds profit maximizing strategies
 - It can assist in finding optimal bidding strategies
 - It can help assess transmission needs
 - It can help value generation (including wind)
- It is educational and informative

(*) Developed by Laurits R. Christensen Associates. For more information contact Brad Wagner at LRCA (brad@caenergy.com)

Uses of GenOptimizer

- For optimal self-dispatch under uncertainty
- For transmission planning assessment
- For generator bidding strategy optimization
 In disputes about market power behavior
- For generator valuation and siting analysis
- As part of an integrated UC under uncertainty as proposed in this talk

GenOptimizer Inputs

- Energy and reserve price forecasts
- Price volatilities
- Fuel costs
- Generator heat rate
- Minimum and maximum energy dispatch constraints
- Maximum reserve dispatch constraints
- Likelihood that offered reserve services will be called
- Start up time of a cold generator vs. a hot generator
- Minimum down time of a generator

GenOptimizer Inputs (cont.)

- Time it takes for a hot generator to become cold
- Ramping rate of the generator
- Cost to start a cold generator vs. a hot generator
- Cost to shut down the generator from a low dispatch vs. a high dispatch
- Banking costs
- No-load costs
- Ramping costs
- Planned generator outages and must-run conditions

Or just about anything an individual generator could care about

How to Model State Transitions

Time t

Time t+1

Feasible State Transitions

Use Backward DP to solve self-commitment problem

How to model ramp rates, startup times and inter-temporal constraints Time t Time t+1

GenOptimizer Execution

• Backward Dynamic Programming determines the optimal strategy in every time period, generator dispatch state, and price level

- Considers price uncertainty and operational constraints

- Monte Carlo is used to evaluate the performance of the commitment strategy under price volatility.
- Finds the optimal energy and reserve dispatches for given price levels

GenOptimizer Outputs

- Expected revenue, costs, and profit by hour for energy and reserve services
 - Standard deviation of expected profit
- Distribution of profits
 - Minimum and maximum profit achieved over a set of Monte-Carlo runs
- Analysis of commitment and optimal dispatch strategies

Time permitting, we will do a short demonstration of GenOptimizer