

Outline

- Background
- Proposed method
- Simple Example
- Alternate method
- Future work

Background

- MISO is evaluating whether to use a Look Ahead Dispatch for their Real Time SCED engine
- Current single interval SCED may result in sub-optimal overall solution due to time horizon based on single point
 - Time coupled multiple interval dispatch addresses this shortcoming
- LAD would have a look ahead time horizon of 1 hour, with 15 minute granularity
 - Only first interval would provide financially binding dispatch target

Background

- MISO Benefit study indicates benefits of LAD implementation
 - Substantial production cost savings.
 - Reduction in scarcities due to better pre-positioning of generation resources
- MISO Staff is also evaluating different ex-post pricing engines to compliment LAD dispatch solution.
 - Single interval ELMP will be in MISO production system mid 2014.
 - Now the issue will focus on how to apply multiple interval ELMP in the Real Time market.

Issues associated with multiple interval ELMP in the Real Time market

Cost shifting from interval to interval

- Future forecast information will affect current operation in both commitment and dispatch
 - Should both dispatch and commitment costs be considered in ex-post price calculations?
- Current operations affected by past operation decisions
 - Should the costs incurred in the past be considered in ex-post price calculations?
 - If commitment costs are considered in pricing, then we need to evaluate re-commitment.
- Should all costs be reflected in prices?
 - Which parts of cost should be reflected in prices?
 - When forecast information is off, should we still reflect costs incurred in the past?

Goals Suggested for RT pricing

- Treat DA commitment separate from RT commitment.
 - Assume DA commitment is fixed in RT.
- If resource was not committed in the past, we should not go back and commit it.
 - When modeling historical periods, only units physically committed in the RT market should be online in the real time pricing engine.
- Allow commitment related costs incurred in the past to affect future prices – so long as costs were incurred to meet forecast needs in the future.
- If past actions lead to sub-optimal position in present, prices going forward should reflect costs of reacting to existing conditions.

Recommended High Level Design for ex-post price calculation under LAD

- To address suggested goals, the following guiding principals for pricing under LAD Dispatch engine are proposed:
 - Costs incurred in the past for real time operations should be reflected in the current price calculation
 - If forecast information is way off, then cost occurring in the past should be treated as sunk costs
 - For past periods, only physically committed units should be considered in ex-post price calculation process
 - Dispatch costs for physically committed, non-fast start units
 - Commitment and dispatch costs for physically committed fast start units

Recommended High Level Design for LAD price calculation

Simplified mathematical model

$$\min \sum_{t=t_s}^{t_e} \left(\sum_{i} GenCost_{it}(g_{it}) \right)$$
 Subject to
$$-ramp_{it} \leq g_{it} - g_{it-1} \leq ramp_{it} \quad \forall i, t$$

$$\sum_{i \in G} g_{it} = D_t, \quad \forall t$$

$$Econmin_{it} \leq g_{it} \leq Econmax_{it} \quad \forall i, t$$

$$t_{s,} starting \ period$$

$$t_{e,} \ ending \ period$$

• Assume t_* represents the target study period. When the forecast is off, $t_s < t_*$. When the forecast is accurate, $t_s = t_*$. $GenCost_{it}(g_{it})$ can include commitment costs depending on the type of unit.

Consider the following 2 unit, 3 interval example:

Unit	Econ Min (MW)	Econ Max (MW)	Energy Offer (\$/MWh)	Ramp Rate (MW/Interval)
Α	20	100	35	2
В	0	100	25	100
Period	1	2	3	
Load (MW)	110	130	132	

- Assume the dispatch will look forward 1 interval.
- The total dispatch study horizon is 2 intervals.

 Assume look back horizon of 1 interval and forecast information is the same as time moving forward

First run: Both dispatch and pricing study horizon intervals 1-2 (no look back)

	Dispatch (MW)		Price (\$/MWh)	
Unit	Interval_1 settlement binding interval	Interval_2 indicative dispatch	Interval_1 settlement binding interval	Interval_2 indicative price
Α	28	30	25	45
В	82	100	25	45

Second run: Dispatch study horizon is intervals 2-3, pricing study horizon is intervals 1-3, with look back of 1 interval

	Dispatch (MW)		Price (\$/MWh)			
Unit	Interval_2 settlement binding interval	interval_3 indicative dispatch	Interval_1 indicative price	Interval_2 settlement binding interval	interval_3 indicative price	
Α	30	32	25	45	35	
В	100	100	25	45	35	

 This method produces the same price (\$45/MWh) for interval 2 in both pricing runs

 Assume look back horizon of 1 interval and first assume forecast information is the same as time moving forward

	Dispatch (MW)		Price (\$/MWh)	
Unit	Interval_1 settlement binding interval	Interval_2 indicative dispatch	Interval_1 settlement binding interval	Interval_2 indicative price
Α	28	30	25	45
В	82	100	25	45

 This method produces the same price (\$45/MWh) for interval 2 in both pricing runs

- Now assume forecast information will change as time moves forward
 - At interval 1, the forecast load for interval 2 is 130MW
 - At interval 2, the updated forecast load for interval 2 now is
 121MW, which means the load forecast was off in interval 1

Load forecast at Interval 1					
	Period	1	2	3	
	Load (MW)	110	130	N/A	
Load forecast	Load forecast at Interval 2				
	Period	1 (actual)	2	3	
	Load (MW)	110	121	123	

- Now assume forecast information will change as time moving forward and in this case
 - At interval 1, the forecast load for interval 2 is 130MW
 - The dispatch and pricing run results are:

First Run: Both dispatch and pricing study period from 1-2						
	Dispatch (MW)		Price (\$/MWh)			
	Interval_1 settlement binding interval	Interval_2 indicative dispatch	Interval_1 settlement binding interval	Interval_2 indicative price		
Α	28	30	25	45		
В	82	100	25	45		

• At interval 2, the updated forecast load for interval 2 now is 121MW, which means the load forecast for interval 2 at interval 1 was off. Under this situation, costs incurred before interval 2 will be treated as sunk costs. So we will set $t_s = t_*$

Second Run: Both dispatch and pricing study period from 2-3						
	Dispatch (MW)		Price (\$/MWh)			
	Interval_2		Interval_2			
	settlement	interval_3	settlement	interval_3		
	binding	indicative	binding	indicative		
	interval	dispatch	interval	price		
Α	21	23	35	35		
В	100	100	35	35		

• Interval 2's price drop to \$35/MWh occurs because we do not consider costs incurred in the past.

Challenges of the proposed price calculation method

Duration of Look Back horizon

- MISO current design:
 - Look Ahead Commitment has 3 hour look ahead horizon over which it can commit/de-commit units
 - Look Ahead Dispatch has 1 hour horizon over which it can redispatch units

Should ex-post Price Engine have 1 hour look back horizon?

- For periods prior to present/target period, all information is fixed. What if a unit is not following ISO's dispatch signal? Should we treat these part of units differently?
- What criteria is used to determine whether forecast information is off?

Alternate pricing method for LAD

- Main challenges of the proposed method are associated with how to treat costs incurred in past
- If we ignore all the costs incurred in the past, then the pricing model under LAD will be similar to the dispatch model, which can be expressed as:

$$\min \sum_{t=t_*}^{t_e} \left(\sum_{i} GenCost_{it}(g_{it}) \right)$$
 Subject to
$$-ramp_{it} \leq g_{it} - g_{it-1} \leq ramp_{it} \quad \forall i, t$$

$$\sum_{i \in G} g_{it} = D_t, \quad \forall t$$

$$Econmin_{it} \leq g_{it} \leq Econmax_{it} \quad \forall i, t$$

$$t_*, starting \ period \ which \ is \ target \ priod$$

$$t_{e,} \ ending \ period$$

Alternate pricing method for LAD

Potential issue with the alternate pricing method for LAD

- Possible sudden price reductions caused by ignoring costs incurred in previous intervals
 - Extra uplift
 - Unit may not want to follow ISO's dispatch signal

Future work plan

- How large is the forecast error?
 - Should magnitude of the forecast error determine whether costs incurred in the past should be considered in price calculation?
- How meaningful is the difference between the proposed and alternate methods?
 - Price volatility differences
 - Uplift payment differences
 - Total load payment differences

