

# Mixed Integer Programming NYISO Proof of Concept Experience

#### **Matthew Musto**

Senior Project Manager

New York Independent System Operator

#### **Muhammad Marwali**

Manager, Energy Markets Products
New York Independent System Operator

#### **FERC Technical Conference**

June 24, 2013 Washington, D.C.



## **Overview**

- Background and Project Genesis
- Multi-Phased Proof of Concept (POC)
- Iterative Development

Enabling Prudent Risk Taking



## **Background**

- In 2009, NYISO began looking at alternatives to Lagrangian Relaxation based Unit Commitment (UC)
- MIP quickly became a top contender, as it was already a de facto standard among ISO/RTOs
- NYISO uses the same commitment algorithm for both Day Ahead (SCUC) and Real-time (RTC)



# First Proof of Concept - 2010

- Developed NYISO UC algorithm in AMPL for our first POC
- Initial results showed similar results to LR with several key issues identified
  - Performance was comparable to LR with considerable variability<sup>1</sup>
  - MIP Gap tolerances large enough to allow timely execution could result in undesirable market outcomes<sup>2</sup>
  - SCUC (Day Ahead) and RTC/RTD (Real Time) markets would likely not be able to run in the required timeframes and solution tolerances

1,2 - See Appendix for References



# Second Proof of Concept - Coprocessor

- Addressing performance was the primary concern stemming from the first POC
  - Unable to migrate an integrated Energy Management System/Market Management System (MMS) to a new hardware platform
  - MMS system ran on hardware which did not offer cutting edge CPU and memory performance<sup>3</sup>
  - Employed a high performance Linux cluster into our MMS to offload computationally intensive tasks (E.g. Unit Commitment)
  - Offloading calculations to x86 Linux servers resulted in >3x performance improvements<sup>1</sup>

3,1 - See Appendix for References



# **Confident Enough to Commit**

- The first POC indentified both solution quality and performance issues
- The second POC quelled fears of performance being insurmountable
- Two years of additional constraint modeling experience supplied confidence we could improve solution quality
- Late 2012 NYISO formally proposed a project to our market participants for a 2014 implementation



# **Iterative Development**

- Desire to confirm early resolution of known issues
  - Performance
  - Solution quality and consistency
- MIP/LP solver
  - Native co-processor solution (low cost, high reliability)
  - Comparable performance to other solvers on NYISO model
  - Consistently more optimal solutions
- Modeling enhancements
  - Constraint modeling improvements with performance as the primary goal



## **First Code Drop Results**

#### Performance

- Confirmed MIP performance is greatly improved with the co-processor<sup>4</sup>
- AMPL time is proving difficult to reduce but options exist

### Optimization Quality

- On average, MIP produces more optimal market solutions
  - >\$3M a year improvement in total production cost
  - >5MW less system losses through optimal commitment of resources
  - Increased transparency to market operations
- Corner case scenarios still present but much better understood and solvable with specific model constraints

#### Ongoing Efforts

 Providing necessary feedback to development so that subsequent builds and testing will be productive

4 -See Appendix for Reference



# **Ability for Stretch Goals**

- Each POC iteration allowed us to isolate and take risks which we could not have been done under normal circumstances
  - Co-processor architecture was new to NYISO
  - Linux was previously not used internally
  - Multiple MIP vendor evaluations took considerable time
- Taking our time allowed technology to mature and in some cases even exist
  - Gurobi now offers a compute server product out of the box which saved significant custom work
- Ultimately, the process is providing a better solution for the NY marketplace
  - Lower cost to develop and maintain
  - Version '2.0' features and quality in the initial release



# **MIP - Opening New Doors**

- Allows faster prototyping of complex modeling and solution methodologies
  - Combine Cycling Modeling
  - Dynamic Reserve Modeling
  - Storage Optimization
  - Disaggregated Virtual Trading
  - UC with Transmission Demand
- Plan to go live 2014



# Appendix

References 1-4



#### MIN/MAX and MEAN Solution Times





#### MIP Total Production Cost Savings (LR-MIP) - Day A





Itanium 9350 SPEC FP = 270 vs. Xeon E5-2690 = 507 (16 cores each)

Sourced from <u>www.spec.org</u>



LR average is 1.5 minute.

Gurobi solve time is 30-45 seconds.

AMPL overhead is 70 seconds.

Internal NYISO testing



The New York Independent System Operator (NYISO) is a not-for-profit corporation responsible for operating the state's bulk electricity grid, administering New York's competitive wholesale electricity markets, conducting comprehensive long-term planning for the state's electric power system, and advancing the technological infrastructure of the electric system serving the Empire State.



www.nyiso.com