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Background

Project structure

◮ EPSRC funded project led by Janusz Bialek at Durham University
with groups at Edinburgh and Southampton.

Group Responsibilities:

◮ Durham: Electrical Engineering: System dynamics

◮ Southampton: Mathematics: Laplacian based graph partitioning

◮ Edinburgh: OR and Optimization: Steady state optimization
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Happy customers

Oooops !

There goes
Long Island,
Detroit,
Ottowa,
Toronto ...
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Background

Goal

◮ Develop a tool that can create a Firewall to isolate the troubled
area from the rest of the network.

◮ Leave network in a stable steady state.

◮ Could be used for off line analysis to prepare responses to faults
in different areas or, if fast enough, to react in real time.



Sectioning “uncertain” parts of network

◮ Network has “uncertain” buses/lines/generators ? ? ?

??

? ?



Sectioning “uncertain” parts of network

Form a Firewall

◮ to: Achieve a new “safe” steady state that
isolates all “uncertain” buses/lines/generators

◮ by: Cutting lines & Shedding loads & Adjusting generation

◮ goal: Minimize the load shed

?

??

?



Sectioning “uncertain” parts of network

◮ Section 0 – uncertain parts, Section 1 – certain parts

◮ All load in section 0 is at risk, with chance β of surviving

?

??

?

Island 1 Island 2

Section 0 Section 1Section 1

Island 3 Island 4



Sectioning with uncertainty: β = 0.5
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◮ 259 MW total load

◮ 0.0 MW load shed

◮ 129.5 expected loss
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◮ 0.0 MW shed in Section 1

◮ 35.9 MW shed in Section 0

◮ 127.8 MW at risk in Section 0

◮ 99.8 MW expected loss



Growth of section 0 in 24 bus network as β → 1

0.00 ≤ β ≤ 1.00
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Sectioning Constraints

◮ Uncertain buses, B0, and lines, L0

◮ Optimization decides what else in 0 & 1 and which line to cut

◮ γb = section for bus b

◮ ρbb′ = 0 if line bb′ is cut, and 1 otherwise

γ = 1 γ = 0 γ = 1

?

??
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Island 1 Island 2

Section 0 Section 1Section 1

Island 3 Island 4



Sectioning Constraints

ρbb′ ≤ 1+ γb − γb′ bb′ ∈ L \L0 No lines between sections

ρbb′ ≤ 1− γb + γb′ bb′ ∈ L \L0 No lines between sections

ρbb′ ≤ 1− γb bb′ ∈ L0 No unsafe lines in Section 1

ρbb′ ≤ 1− γb′ bb′ ∈ L0 No unsafe lines in Section 1

γb = 0 b ∈ B0 All unsafe buses in Section 0

γ = 1 γ = 0 γ = 1

?

??

?

Island 1 Island 2

Section 0 Section 1Section 1

Island 3 Island 4



AC power flow model: Notation
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vb, θb voltage and phase angle at bus b
pL
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L
bb′ real and reactive power flows into line (b,b′) from bus b
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g real and reactive power output of generator g
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d real and reactive power demand at load d

αd proportion of load d connected — αd ∈ [0,1]



Kirchhoff Current Law (KCL): conservation of flow at buses
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Kirchhoff Voltage Law (KVL): flow-voltage relations on lines
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Disconnecting lines (pL
bb′ case)
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MILP Formulation
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Bounds on variables

pbb′ + pb′b ≤ Hbb′ Thermal limit on line

V−
b ≤ vb ≤ V +

b Voltage limit at bus e.g. vb ∈ [0.95,1.05]

QG−
g ≤ qG

g ≤ QG+
g Reactive Power limits QG−

g ,QG+
g

independent of current operating point

ζgPG−
g ≤ pG

g ≤ ζgPG+
g Real Power limits PG−

g ,PG+
g

dependent on current operating point

ζg = 0 if generator is switched off

ζg = 1 if generator remains on



Objective

Definition

◮ Planned supply: PD
d αd

◮ Supply probability: β in Section 0

◮ Objective: Maximize expected load supplied

Objective: max β ∑
d∈S0

PD
d αd + ∑

d∈S1

PD
d αd

IP Formulation

◮ Split each αd into α0d for section 0 and α1d for Section 1

αd = α0d + α1d , 0 ≤ α1d ≤ γb

Objective: max∑
d

PD
d (βα0d + α1d)



Variables for average line flow and loss
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Approximations of Kirchhoff’s Laws

We consider 3 approximations to Kirchhoff’s Laws

◮ “DC” Constant Loss:

◮ Drop the reactive power constraints
◮ Set all voltages to 1
◮ Assume line loss pLoss

bb′ = its pre-islanding value

◮ AC Linear:
◮ Include reactive power constraints
◮ Linearize KVL

◮ AC PWL:
◮ Include reactive power constraints
◮ Linearize KVL
◮ Include PWL approximation of cosine terms



Case: B = 5,G = 1,C = 0.5, |δ| <= 57◦, 0.95 ≤ v ≤ 1.05.

max “DC” AC Lin AC PWL

pAv =−Bδ 2.500 X X X

+ G(vb − vb′) 0.100 X X

+ G/2 ((vb −1)2 − (vb′ −1)2) 0.001

+ B(1− vbvb′)sinδ 0.245

+ B(δ− sinδ) 0.103

pLoss = 2G(1− cosδ) 0.245 X

+ G(vb − vb′)
2 0.001

+ 2G(vbvb′ −1)(1− cosδ) 0.023

qAv =−Gδ 0.500 X X

− (B + C)(vb − vb′) 0.495 X X

− (B + C)/2 ((vb −1)2 − (vb′ −1)2) 0.001

+ G(δ− sinδ)) 0.021

+ G(1− vbvb′)sinδ) 0.051

qLoss =−C(vb − vb′ −1) 0.550 X X

−2B(1− cosδ) 1.224 X

−B(vb − vb′)
2 0.050

−C((vb −1)2 +(vb′ −1)2)+ 0.000

+ 2B(vbvb′ −1)(1− cosδ) 0.125



Computational tests

Steps

1. Solve OPF: for pre-islanded state using the full AC equations.

2. Based on this solution solve the MILP problem to decide the best
islands and generator shut downs.

3. With the islands and generator shutdowns fixed, solve an optimal
load shedding problem using the full AC equations.

Software and examples

◮ 1 and 3 use IPOPT (COIN-OR).

◮ 2 uses CPLEX 12.3 (using 8 cores)

◮ IEEE test cases up to 300 buses.



Computational Times (DC constant loss)
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MILP Suboptimality (DC constant loss)

How close is the MILP solution to the MILP optimal?

Much better than the bounds indicate:

Average amount above proven optimal solution

Feasible 5% gap 1% gap

9.12% 0.37% 0.04%



AC infeasibility (DC constant loss)

◮ Some AC solutions were infeasible because voltage limits were
violated.

◮ Proportion where one or more methods gave an AC infeasibility:

nB 9 14 24 30 39 57 118 300

AC infeasible % 0% 15% 50% 27% 35% 17% 14% 28%

What can be done?

◮ Relaxing voltage limits in the contingency?
0.9 ≤ v ≤ 1.1 “cures” some cases.

◮ Alter the tap setting post-islanding?

◮ Use AC PWL in MILP for islanding



AC feasibility problems

DC constant loss MILP

Voltage problems
v2 = 1.1461
v6 = 0.8452

Disconnect static reactor at bus 6:
v2 = 1.0709
v6 = 0.9291

~ ~~

~

~~ ~ ~

~ ~~

2118 22

16 19

17

12

15 14 13

9 10

1 2 7

4

11

8

23
20

5

24

3

?6



AC feasibility problem solved

AC PWL MILP

No Voltage problems
v2 = 1.02
v6 = 0.9851
v10 = 0.9984
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Comparison of AC PWL and AC solutions
24-bus network: angles, voltages & flows
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AC Infeasible cases

24 Bus case. 24 single bus contingencies

Method Number AC Average Elapsed
infeasible Time (sec)

DC Constant 7 0.32
AC Linear 3 2.33
AC PWL 0 7.61

Results are similar for other IEEE cases



Dynamic instability

◮ Islanding creates a shock that could excite dynamic instability,
and so prevent the system converging to the planned steady
state.

◮ Tests of previous 452 islanding solutions using 2nd order models
showed 14 to be transiently unstable.

◮ Penalise line and generator disconnections to reduce shock



Times with and without line and generator penalties
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◮ All problems now transiently stable

◮ Average load supply decreased by 0.34%



Transient dynamics 24 Bus

Note different scales
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Current & Future

◮ Scale up: We can solve “2500” bus Polish networks with DC MILP

◮ Computation: Develop heuristics and aggregation methods

◮ Bus splitting: to give more flexibility in islanding.

◮ Dynamic stability: Incorporate more realistic indicators in MILP
— using work being done at Durham.

Thank You

Questions?
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