ACOPF: History and Formulations
(Alternating Current Optimal Power Flow)

FERC Staff Technical Conference on Increasing Real-Time and Day-Ahead Market Efficiency through Improved Software
June 25, 2012 Washington, DC

Mary Cain, Richard O’Neill, Anya Castillo
Office of Energy Policy and Innovation

Federal Energy Regulatory Commission
Official Disclaimer

- The author’s views do not necessarily represent the views of the Federal Energy Regulatory Commission.
Outline

• ACOPF background
• Related problems
• Insights from 50 years of history
• ACOPF Formulations
ACOPF: What is it?

• Alternating Current Optimal Power Flow
• Optimization problem – optimize system dispatch subject to system and resource constraints
• Solved in different timeframes
 – Real time market: every 5 minutes
 – Day-ahead market: every 24 hours in hourly increments
 – Capacity market: annually for 3-5 years ahead
 – Transmission planning: annually for 10-15 future years
OPF

- OPF is a general term that describes a class of problems
 - ACOPF Includes
 - full power flow model and
 - system and resource constraints
 - DCOPF Assumes
 - voltage magnitudes constant,
 - voltage angles close to 0,
 - lossless (assume $R \ll X$) or lossy system
 - Decoupled OPF
 - Divides the ACOPF into linear subproblems
 - Iterates between the subproblems
ACOPF - basics

• Constraints
 – AC power flow equations
 – Equipment/operating/reliability constraints
 • Voltage, Current, Angle, Real Power, Reactive Power, Apparent Power

• Objective function
 – Maximize social welfare (if demand bids)
 – If demand is fixed, lowest system cost
Related Problems: Power Flow

- Power flow
 - Finds a feasible solution to the power flow equations, but is not an optimization problem
 - Formulated as AC, DC, and decoupled
 - Mismatch
 - Bus type classification
 - Need to match number of variables with number of equations to find solution
Power flow – bus classification

<table>
<thead>
<tr>
<th>Bus Type</th>
<th>Fixed quantities</th>
<th>Variable quantities</th>
<th>Physical interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV</td>
<td>Real power (P)</td>
<td>Reactive power (Q)</td>
<td>Generator</td>
</tr>
<tr>
<td></td>
<td>Voltage (V)</td>
<td>Angle (θ)</td>
<td></td>
</tr>
<tr>
<td>PQ</td>
<td>Real power (P)</td>
<td>Voltage (V)</td>
<td>Load, or generator with fixed output</td>
</tr>
<tr>
<td></td>
<td>Reactive power (Q)</td>
<td>Angle (θ)</td>
<td></td>
</tr>
<tr>
<td>Slack</td>
<td>Voltage (V)</td>
<td>Real power (P)</td>
<td>An arbitrarily chosen generator</td>
</tr>
<tr>
<td></td>
<td>Angle (θ)</td>
<td>Reactive power (Q)</td>
<td></td>
</tr>
</tbody>
</table>
Differences between power flow and OPF

- OPF is an optimization problem with constraints and objective function
 - The number of variables and constraints do not need to match
 - Bus type classifications are unnecessary and may introduce new constraints
- Power flow is a system of equations. It is often solved as a sort of optimization problem with the objective of minimizing “mismatch”
Related Problems: Economic Dispatch

- Economic dispatch
 - Optimization problem – minimize cost subject to generator output limits, overall constraint of generation = load + losses
 - Classic economic dispatch minimizes cost, but does not include network constraints
 - Security-constrained economic dispatch includes network constraints, usually formulated similar to DCOPF or decoupled OPF
History

- Early 20th century:
 - ACOPF ‘solved’ by experienced engineers/operators using judgement, rules of thumb
 - Power flow problem - analog network analyzers
 - Economic dispatch – specialized slide rules
History – mid-century

• 1950’s - Digital solutions to the power flow
 – Ward and Hale – 1956
 – Iterative methods based on nodal admittance (Y) or nodal impedance (Z) matrix
 – Gauss-Seidel method

• 1960’s – Newton’s method for power flow
 – 1960’s – Tinney – sparsity techniques
History - 1962

• 50 years ago – Carpentier formulated ACOPF with some key insights:
 – A slack bus unnecessary in an optimization problem
 – Assume problem is suitably convex to apply the KKT conditions
• Based on google scholar, at least 236 papers have cited Carpentier’s original 1962 paper, even though it’s not available on internet
• 1968 – Dommel and Tinney – reiterate Carpentier’s insights, cited by at least 769
• ACOPF formulation has not changed significantly since 1962
History

• Several fairly comprehensive literature review papers since the 1980’s
• Stott and Alsac – decoupled OPF
• Literature since 1960’s has focused on different solution techniques, modeling improvements
• Challenges of the 1990’s persist today
 – Lack of uniform usage or problem definition
 – Local minima (is the problem really suitably convex to apply KKT?)
 – Lack of fast, robust, reliable nonlinear solution algorithms
Notation

• Assumption: balanced 3-phase steady-state operation
• When \(n \) and \(m \) are subscripts, they index buses;
• \(k \) indexes the transmission elements.
• When \(j \) is not a superscript, \(j = (-1)^{1/2} \);
• \(i \) is the complex current.
• When \(j \) is a superscript, it is the ‘imaginary’ part of a complex number.
• Matrices and vectors are upper case.
• Scalars and complex numbers are lower case.
Notation

- For column vectors A and B of length n, where a_k and b_k are the k^{th} components of A and B respectively, the Hadamard product ‘·’ is defined so that $A·B = C$, where C is a column vector also of length n, with k^{th} component $c_k = a_kb_k$.
- The complex conjugate operator is * (superscript) and * (no superscript) is an optimal solution.
- **Indices and Sets**
 - n, m are bus (node) indices; $n, m \in \{1, \ldots, N\}$ where N is the number of buses. (m is an alias for n)
 - k is a three-phase transmission element with terminal buses n and m.
 - $k \in \{1, \ldots, K\}$ where K is the number of transmission elements between two buses; k counts from 1 to the total number of transmission elements, and does not start over for each bus pair nm.
 - K' is the number of a connected bus pairs ($K' \leq K$).
 - Unless otherwise stated, summations (\sum) are over the full set of indices.
Notation

- **Variables**
- p_n is the real power injection (positive) or withdrawal (negative) at bus n
- q_n is the reactive power injection or withdrawal at bus n
- $s_n = p_n + jq_n$ is the net complex power injection at bus n
- p_{nmk} is the real power at bus n to bus m on transmission element k
- q_{nmk} is the reactive power at bus n to bus m on transmission element k
- θ_n is the voltage phase angle at bus n
- $\theta_{nm} = \theta_n - \theta_m$ is the voltage phase angle difference from bus n to bus m
Variables, continued

- i is the current (complex phasor); i_n is the current (complex phasor) injection (positive) or withdrawal (negative) at bus n where $i_n = i_n^r + j i_n^i$

- i_{nmk} is the current (complex phasor) injection (positive) or withdrawal (negative) flow in transmission element k at bus n (to bus m). $i_{nmk} = i_{nmk}^r + j i_{nmk}^i$

- s_{nmk} is the apparent complex power injection (positive) or withdrawal (negative) into bus n on transmission element k. $s_{nmk} = s_{nmk}^r + j s_{nmk}^i$

- v_n is the complex voltage at bus n. $v_n = v_n^r + j v_n^i$
Notation

• **Variables, continued**
 • \(y_{nmk} \) is the complex admittance on transmission element \(k \) connecting bus \(n \) and bus \(m \) (If buses \(n \) and \(m \) are not connected directly, \(y_{nmk} = 0 \)); \(y_{n0} \) is the self-admittance (to ground) at bus \(n \).
 • \(y_{nm} \) is the complex admittance connecting bus \(n \) and bus \(m \) for all transmission elements \(k \) between buses \(n \) and \(m \).
 • \(V = (v_1, \ldots, v_N)^T \) is the complex vector of bus voltages; \(V = V^r + jV^i \)
 • \(I = (i_1, \ldots, i_N)^T \) is the complex vector of bus current injections; \(I = I^r + jI^i \)
 • \(P = (p_1, \ldots, p_N)^T \) is the vector of real power injections
 • \(Q = (q_1, \ldots, q_N)^T \) is the vector of reactive power injections
 • \(G \) is the \(N \)-by-\(N \) conductance matrix
 • \(B \) is the \(N \)-by-\(N \) susceptance matrix
 • \(Y = G + jB \) is the \(N \)-by-\(N \) complex admittance matrix
Notation

• **Functions and Transformations**

 • *Re*() is the real part of a complex number, for example, \(\text{Re}(i^n + j^n) = i^n \)

 • *Im*() is the real part of a complex number, for example, \(\text{Im}(i^n + j^n) = j^n \)

 • \(| | \) is the magnitude of a complex number, for example, \(|v_n| = \left[(v^n_r)^2 + (v^n_j)^2 \right]^{1/2} \)

 • *abs*() is the absolute value function.
• Parameters

• r_{nmk} is the resistance of transmission element k.
• x_{nmk} is the reactance of transmission element k. s_{k}^{max} is the thermal limit on apparent power over transmission element k at both terminal buses.
• $\theta_{nm}^{min}, \theta_{nm}^{max}$ are the maximum and minimum voltage angle differences between n and m.
• p_{n}^{min}, p_{n}^{max} are the maximum and minimum real power for generator n.
• q_{n}^{min}, q_{n}^{max} are the maximum and minimum reactive power for generator n.
• $C_{1} = (c_{1}^{1}, \ldots, c_{N}^{1})^{T}$ and $C_{2} = (c_{1}^{2}, \ldots, c_{N}^{2})^{T}$ are vectors of linear and quadratic objective function cost coefficients respectively.
Admittance Matrix

- Start with conductance \(G \), susceptance \(B \) and admittance \(Y \) matrices where \(gnm, bnm, \text{ and } ynm \) represent elements of the \(G \), \(B \), and \(Y \) matrices.

- Assume shunt susceptance negligible.

\[
\begin{align*}
g_{nmk} &= \frac{r_{nmk}}{(r_{nmk}^2 + x_{nmk}^2)} \quad \text{for} \quad n \neq m \\
b_{nmk} &= -\frac{x_{nmk}}{(r_{nmk}^2 + x_{nmk}^2)} \quad \text{for} \quad n \neq m \\
y_{nmk} &= g_{nmk} + j b_{nmk} \quad \text{for} \quad n \neq m \\
y_{nm} &= 0 \quad \text{for} \quad n = m \\
y_{nm} &= -\sum_k y_{nmk} \quad \text{for} \quad n \neq m \\
y_{nn} &= y_{n0} + \sum m \ y_{nm} \\
g_{nm} &= -\sum_k g_{nmk} \quad \text{for} \quad n \neq m \\
g_{nn} &= g_n + \sum m \ g_{nm} \\
b_{nm} &= -\sum_k b_{nmk} \quad \text{for} \quad n \neq m \\
b_{nn} &= b_n + \sum m \ b_{nm}
\end{align*}
\]
Transformers

- Y matrix above does not include transformer parameters.
- For an ideal in-phase transformer (assuming zero resistance in transformer windings, no leakage flux, and no hysteresis loss), the ideal voltage magnitude (turns ratio) is \(anmk = \frac{|vm|}{|vn|} \) and \(\theta_n = \theta_m \), where \(n \) is the primary side and \(m \) is the secondary side of the transformer.
- Since \(\theta_n = \theta_m \), \(anmk = \frac{|vm|}{|vn|} = \frac{vm}{vn} = -\frac{inm}{imn} \)
- The current-voltage equations for ideal transformer \(k \) between buses \(n \) and \(m \) are:
 - \(inmk = anmk^2ynmkvn - anmkynmkvm \)
 - \(imnk = -anmkynmkvn + ynmkvm \)
- For the phase shifting transformer (PAR) with a phase angle shift of \(\phi \),
 - \(\frac{vm}{vn} = tnmk = anmk e^{j\phi} \)
 - \(\frac{inm}{imn} = tnmk^* = -anmk e^{-j\phi} \)
- The current-voltage (IV) equations for the phase shifting transformer \(k \) between buses \(n \) and \(m \) are:
 - \(inmk = anmk^2ynmkvn - tnmk^*ynmkvm \)
 - \(imnk = -tnmkynmkvn + ynmkvm \)
Kirchhoff’s current law requires that the sum of the currents injected and withdrawn at bus \(n \) equal zero:

\[
i_n = \sum_k i_{nmk} \tag{2}
\]

If we define current to ground to be \(y_{n0}(v_n - v_0) \) and \(v_0 = 0 \), we have:

\[
i_n = \sum_k y_{nmk}(v_n - v_m) + y_{n0}v_n \tag{6}
\]

\[
i_{nmk} = y_{nmk}(v_n - v_m) = g_{nmk}(v_n^r - v_m^r) - b_{nmk}(v_n^i - v_m^i) + j(b_{nmk}(v_n^r - v_m^r) + g_{nmk}(v_n^i - v_m^i))
\]

\[
\begin{align*}
 i_{nmk}^r &= g_{nmk}(v_n^r - v_m^r) - b_{nmk}(v_n^i - v_m^i) \\
 i_{nmk}^i &= b_{nmk}(v_n^r - v_m^r) + g_{nmk}(v_n^i - v_m^i)
\end{align*}
\]

Current is a linear function of voltage. Rearranging,

\[
i_n = v_n(y_{n0} + \sum_k y_{nmk}) - \sum_k y_{nmk}v_m \tag{8}
\]
AC Power Flow Equations

- In matrix notation, the IV flow equations in terms of current (I) and voltage (V) in (8) are

\[I = YV = (G + jB)(V^r + jV^i) = GV^r - BV^i + j(BV^r + GV^i) \]

(12)

where \(I^r = GV^r - BV^i \) and \(I^i = BV^r + GV^i \)

- In \(I \) and \(V \), the flow equations are linear

In another matrix format, (12) is

\[I = (I^r, I^i) = Y(V^r, V^i)^T \]

or

\[I = (I^r, I^i) = \begin{bmatrix} G & -B \\ B & G \end{bmatrix} \begin{bmatrix} V^r \\ V^i \end{bmatrix} \]

where \(Y = \begin{bmatrix} G & -B \\ B & G \end{bmatrix} \)
The traditional power-voltage power flow equations defined in terms of real power (P), reactive power (Q) and voltage (V) are:

- $S = P + jQ = \text{diag}(V)I^* = \text{diag}(V)[YV]^* = \text{diag}(V)Y^*V^*$

(16)

The power injections are

- $S = V \cdot I^* = (V^r + jV^i) \cdot (I^r - jI^i) = (V^r \cdot I^r + V^i \cdot I^i) + j(V^i \cdot I^r - V^r \cdot I^i)$

(18)

where

- $P = V^r \cdot I^r + V^i \cdot I^i$
 (20)
- $Q = V^i \cdot I^r - V^r \cdot I^i$
 (22)

The power-voltage power flow equations (16) and (18) are quadratic. The IV flow equations (12) are linear.
Constraints

• **Generator and load constraints**

 \[P_{\text{min}} \leq P \leq P_{\text{max}} \quad \text{and} \quad Q_{\text{min}} \leq Q \leq Q_{\text{max}} \]

 - In terms of V and I, the injection constraints are:

 \[P_{\text{min}} \leq V_r \cdot I_r + V_i \cdot I_i \leq P_{\text{max}} \]

 \[Q_{\text{min}} \leq V_i \cdot I_r - V_r \cdot I_i \leq Q_{\text{max}} \]

• **Voltage constraints**

 \[(v_{\text{min}}^m)^2 \leq (v_r^m)^2 + (v_i^m)^2 \leq (v_{\text{max}}^m)^2\]

 - In matrix form:

 \[(V_{\text{min}})^2 \leq V_r \cdot V_r + V_i \cdot V_i \leq (V_{\text{max}})^2\]

• **Line flow thermal constraints**

 The apparent power at bus \(n\) on transmission element \(k\) to bus \(m\) is:

 \[s_{nmk} = v_n \cdot i_{nmk}^* = v_n y_{nmk} (v_n - v_m) = v_n y_{nmk} v_n - v_n y_{nmk} v_m \]

 - The thermal limit on \(s_{nmk}\) is:

 \[(s_{nmk}^r)^2 + (s_{nmk}^i)^2 = |s_{nmk}|^2 \leq (s_{\text{max}}^k)^2 \]

 - Or The thermal limit on \(i_{nmk}\) is:

 \[(i_{nmk}^r)^2 + (i_{nmk}^i)^2 = |i_{nmk}|^2 \leq (i_{\text{max}}^k)^2 \]
Objective Functions

• The economically efficient objective function is to maximize social welfare. In the case of the OPF with fixed demand, that is the same as minimizing system cost.
 – Areas to explore – adding cost of reactive power, adding cost of switching

• Others:
 – Minimize losses
 – Minimize fuel cost
 – Minimize emissions
 – Minimize control actions
 – All of these other objective functions are redundant or sub-optimal in a ACOPF that models constraints and costs.
• Three formulations:
 – Polar P-Q (most common in literature)
 – Rectangular P-Q (less common in literature)
 – Rectangular I-V (new)
 – There are also a variety of hybrid formulations.
Formulations: Polar P-Q

- Network-wide objective function: \(\text{Min } c(S) \)
- Network-wide constraints:
 - \(P_n = \sum_{mk} V_n V_m (G_{nmk} \cos \theta_{nm} + B_{nmk} \sin \theta_{nm}) \)
 - \(Q_n = \sum_{mk} V_n V_m (G_{nmk} \sin \theta_{nm} - B_{nmk} \cos \theta_{nm}) \)
 - These are quadratic-trigonometric equalities
 - \(V_{\text{min}} \leq V \leq V_{\text{max}} \)
 - \(\theta_{\text{min}_{nm}} \leq \theta_n - \theta_m \leq \theta_{\text{max}_{nm}} \)
Formulations: Rectangular P-Q

- Network-wide objective function: \(\text{Min } c(S) \)
- Network-wide constraint: \(P + jQ = S = V \cdot I^* = V \cdot Y^* V^* \) \((41) \)
- Bus-specific constraints
 - \(P_{\text{min}} \leq P \leq P_{\text{max}} \) \((43) \)
 - \(Q_{\text{min}} \leq Q \leq Q_{\text{max}} \) \((45) \)
 - \((46')-(47') \) are replaced by:
 - \(V^r \cdot V^r + V^i \cdot V^i \leq (V_{\text{max}})^2 \) \((46) \)
 - \((V_{\text{min}})^2 \leq V^r \cdot V^r + V^i \cdot V^i \) \((47) \)
 - \((|s_{nmk}|)^2 \leq (s_{\text{max}}^k)^2 \) for all \(k \) \((48) \)
 - \((49') \) is replaced by:
 - \(\theta_{\text{min}} \leq \arctan(V^i_n/V^r_n) - \arctan(V^i_m/V^r_m) \leq \theta_{\text{max}} \) \((49) \)
 - \(V^r \geq 0 \) \((49.1) \)
Formulations: Rectangular I-V

- Network-wide objective function: \(\text{Min } c(S) \)
 \((50) \)
- Network-wide constraint: \(I = YV \)
 \((51) \)
- Bus-specific constraints:
 - \(P = V^r \cdot I^r + V^i \cdot I^i \leq P^{\text{max}} \)
 \((54) \)
 - \(r \leq P = V^r \cdot I^r + V^i \cdot I^i \)
 \((55) \)
 - \(Q = V^i \cdot I^r - V^r \cdot I^i \leq Q^{\text{max}} \)
 \((56) \)
 - \(Q^{\text{min}} \leq Q = V^i \cdot I^r - V^r \cdot I^i \)
 \((57) \)
 - \(V^r \cdot V^r + V^i \cdot V^i \leq (V^{\text{max}})^2 \)
 \((58) \)
 - \((V^{\text{min}})^2 \leq V^r \cdot V^r + V^i \cdot V^i \)
 \((59) \)
 - \((i^{\text{ink}})^2 \leq (i^{\text{max}})^2 \) for all \(k \)
 \((60) \)
 - \(\theta^{\text{min}}_{nm} \leq \arctan(v^r_n/v^r_m) - \arctan(v^i_n/v^i_m) \leq \theta^{\text{max}}_{nm} \)
 \((61) \)
- Can (60) make (61) redundant?
- \(V^r \geq 0 \)
 \((62) \)
Comparison of Formulations

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Polar PQ</th>
<th>Rectangular PQ</th>
<th>Rectangular IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network constraints</td>
<td>2N nonlinear quadratic and trigonometric equality constraints</td>
<td>2N quadratic equalities</td>
<td>2N linear equality constraints</td>
</tr>
<tr>
<td>Angle difference constraints</td>
<td>Linear</td>
<td>Nonconvex (arctan); Linear if replaced with current or apparent power constraint</td>
<td>Nonconvex (arctan); Linear if replaced with current or apparent power constraint</td>
</tr>
<tr>
<td>Bus constraints</td>
<td>Linear</td>
<td>Nonconvex quadratic inequalities</td>
<td>Locally quadratic, some nonconvex, some convex</td>
</tr>
</tbody>
</table>
Conclusions

• The ACOPF problem is inherently difficult due to nonconvexities, multipart nonlinear pricing, and alternating current.
• We do not yet have practical approaches to solving nonconvex problems.
• The ACOPF is a well-structured problem, and has developed during 50 years of research.
• The ACOPF is not a hypothetical problem – it is solved every 5 minutes through approximations and judgment.
• People have researched the ACOPF for 50 years, but there are still a lot of possibilities and ways to examine it.
• There is not yet a commercially viable full ACOPF. Since today’s solvers do not return the gap between the given and globally optimal solution.
• If we make a rough estimate that today’s solvers are on average off by 10%, and world energy costs are $400 billion, closing the gap by 10% is a huge financial impact.
Thank You

• Questions?

• Contact: mary.cain@ferc.gov