A Focus on Improving Performance of the Day-Ahead Market: A Market Participant Perspective

Staff Technical Conference
Federal Energy Regulatory Commission

Dr. Alex Papalexopoulos, Ph.D.
ECCO International, Inc.
San Francisco, CA
June 28, 2011
Outline

- State of the art modeling and methodologies for clearing the Day Ahead Market
- Next Generation of Algorithms for Improving Efficiency
- Renewable Energy Sources Participation in the Market
- Demand Response Modeling Issues
- Market Participant Simulation Processes, Requirements and Data Issues
- Summary
SCUC Solution Method

- Mixed Integer Linear Programming (MILP)
 - Separate power flows for each time interval
 - Iterate with optimization engine that has a single power balance constraint and the active inequality constraints for each time interval

Optimization Engine

Power Flow

Schedules

PTDFs

Loss marginal rates

© Copyright 2011 ECCO International, Inc
LMPs & Ancillary Services Prices

- When the market clears it produces along with the LMPs the Ancillary Services Marginal Prices for each region (RASMPs) and for each service.
- Energy and energy are coupled through the resource’s Capacity limit constraints.
- If these constraints are binding the LMPs are impacted.
- The RASMPs for each service is the shadow cost of the AS constraint for the service at the optimal solution.
- All resources in the region are paid the same regional price (ASMP).
- Units that belong in more than one region are paid the summation of the RASMPs of the over-lapping regions.
Benefits of Energy-AS Co-optimization

- Efficient Unit Commitment and Energy/AS schedule
 - Lower overall cost
- Efficient allocation of inter-tie transmission capacity
- Accurate representation of opportunity cost in LMP and AS Marginal Price (ASMP)
 - ASMP ≥ AS Bid + Opportunity Cost (OC)
 - Opportunity Cost = |LMP – Energy Bid|
 - If LMP < Energy Bid → OC = 0
 - If a resource has not submitted an energy bid and is not under an obligation to offer energy, then OC = 0
State of the Art Modeling

- Start Up Cost & Unit Start Up Time Functions
- Forbidden Regions & Ramp Rate Functions
- Inter-temporal Constraints (Minimum Up/Down Constraints, Start-Up Time, Maximum number of Daily Start-Ups, Daily Energy Limit, etc.)
- Various types of network constraints (Full AC Power Flow Solution, Transmission Constraints, Inter-Tie Energy/AS Constraints, Nomograms, Contingency Constraints, etc.)
MILP versus ALR Comparison

<table>
<thead>
<tr>
<th>Capability</th>
<th>MILP</th>
<th>ALR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexibility for adding new constraints and models</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Flexibility of modeling a large number of coupling constraints</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Dynamic ramp rates & Forbidden regions with crossing rules</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Advanced infeasibility detection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heuristics to achieve a feasible solution</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Block dispatchable transactions</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Optimal automatic discrete relaxation of infeasible constraints</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Lower bound on the optimal solution</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Performance</td>
<td>fast enough</td>
<td>fast</td>
</tr>
</tbody>
</table>
Next Generation of Algorithms for Improving Efficiency

- Develop Multi-Day Unit Commitment (issues: bid replication, performance)
- Co-optimize Energy/AS/FTRs in the DAM to hedge congestion in RTM
- Implement Nodal Pricing for Loads (issues: economic hardship on entities located in load pockets)
- Co-optimize generation dispatch for congestion management and network reconfiguration, i.e., transmission switching (issue: network reconfiguration solution does not ensure revenue adequacy in the FTR market)
- Develop market mechanisms to manage high penetration of Renewable Energy Sources (RES)
- Co-optimize Markets and Reliability (Co-optimize Energy, AS, Transmission & RUC products)
DAM-RUC Co-Optimization

- One integrated approach
 - Two power balance constraints
 - Generation Schedule = Load Schedule
 - Generation Schedule + RUC Capacity = Demand Forecast

Pros
- Only one pass
- Maximum efficiency
- Effective mitigation
- Better manage over-generation conditions

Cons
- May be difficult to isolate RUC commitment cost
- Congestion costs from RUC capacity
- More complex to implement
DAM-RUC Co-Optimization

- Minimize
 - Start-Up Cost
 - Minimum Load Cost
 - Energy Schedule Cost
 - Ancillary Services Procurement Cost
 - RUC Capacity Procurement Cost
- All other constraints similar to DAM and RUC
 - Inter-temporal constraints
 - MUT, MDT, MDS, ramp rates, energy limits
 - Forbidden operating regions
 - AS regional constraints
 - Inter-tie Energy/AS/RUC Capacity constraints
RES Participation in Forward Markets

- Managing renewables today
- Grid Rule Changes
- Day Ahead Market Rules
- Additional Forward Markets
- Additional Congestion Hedging Mechanisms
Managing Renewables Today

- Renewable participation in Day-Ahead Markets is not consistent throughout US markets
 - Renewables may not participate due to forecast uncertainties and unfavorable market rules
 - This may lead to renewables “showing up” in real-time markets, causing inconsistencies from the Day-Ahead market
- Simulations can be adjusted to account for renewable characteristics
 - Forecast uncertainty can be modeled with Monte Carlo and other probabilistic techniques
 - Long-term simulations must include realistic variability in hourly, daily, and seasonal weather patterns
Grid Rules for Renewables

- Ensure that RES provide valuable Ancillary Services
- Ensure that grid rules require these capabilities from new RES
- Promote electricity storage; Pumped-storage and others (compressed air)
- A/S products could include: Black Start, Voltage Support, Primary Governor Response, Load Following, Regulation Reserves, and Spinning Reserves
 - Providing A/S instead of energy sometimes requires the “dumping” of energy
 - This may make economic sense during periods of high renewable resource production levels
Day-Ahead Market Rules for Renewables

- Day-ahead market rules should not be prejudiced against (or biased towards) any particular resource category; provide economic bids; minimize administrative measures
- The market products and rules should support grid reliability and overall economic efficiency of the grid
- Production tax credits & other incentives should not adversely impact operation of markets
 - For example, wind generation often continues to produce at negative prices (e.g. -$30/MWh) because of external incentives
 - These prices do not reflect the “true” costs of operation (e.g. fuel, maintenance, …)
 - This behavior can have negative impacts on other resources in the grid
- Participation in Day-Ahead Market by renewables is subject to additional uncertainty, due to wind/solar forecasting errors
 - Additional hedging mechanisms may be useful
Day-Ahead Market Rules for Renewables

- Provide incentives for increased dispatch capability (especially downward dispatchability) such as disallowing netting of deviations
- Substantially reduce energy bid floors to enable LMPs to go lower, thus incenting resources to submit decremental bids and capturing the RES opportunity costs
- Implement market rules to increase operational flexibility, such as Performance-based Regulation, load following, etc.
- Provide incentives to reduce the amount of self-schedules
- Achieve flexible thermal generation
Additional Forward Markets (e.g. Hour Ahead Market)

- Significant forecasting errors exist in the Day-Ahead for renewable resources
- An additional forward market (e.g. 4-hours into the future) could be very beneficial
 - Renewable resource forecasts become significantly better when the timeframe becomes shorter
 - Provide a scheduling opportunity to RES to establish a schedule as the basis for measuring real-time deviations
 - There is still time for other non-renewable resources (e.g. combined-cycle plants) to respond to changes in RES (and load) forecasts
Additional Congestion Hedging Mechanisms

- Power Markets typically offer Financial Transmission Rights to allow hedging against congestion uncertainty
 - Purchased months/years ahead and settled in the Day-Ahead
- Renewable resources have significant uncertainty even after the close of the Day-Ahead Market
 - Additional hedging mechanisms would allow for hedging of congestion in the 4-Hour Ahead and Real-Time Markets
Demand Response

- Typically we have two types of DR products, a) Price DR Products and b) Reliability (emergency) DR Products.
- Generally, Price DR products are activated when energy procurement prices are high or system resources are constrained; an example is the CAISO’s Proxy Demand Resource (PDR) product.
- Reliability DR Products are activated programs to respond to severe resource constraints or grid emergencies; an example is the CAISO’s Reliability Demand Response Product (RDRP).
- DR markets include, a) Capacity Market, b) Reserves & Regulation Market and c) Energy Markets.
DR Bidding Modeling

- Participating Load (PL) submits a three-part bid that includes the following: a) Load Curtailment Cost, b) Minimum Load Reduction Cost and c) Load Energy Bid
- Aggregate PLs are modeled as aggregate controls in the optimization with a fixed distribution to the underlying nodes using relevant Custom LDFs
- The Base Load is a Price Taker, i.e., it is charged the relevant aggregate LMP as any non-Participating Load
- When the Participating Load is curtailed from the Base Load, it is eligible for recovering its Load Curtailment Cost and its hourly Minimum Load Reduction Cost
- When the Participating Load is dispatched it is paid (in addition to the Base Load charge) its LMP for the load reduction
DR Modeling Improvement

- DR resources can arbitrage low Zonal prices and higher nodal prices; the potential “money pump” in which DR resources can exaggerate the load reduction is substantial.
- This strategy is likely to be profitable in locations and at times when the LMP is anticipated to be higher than the Zonal price.
- Define and implement much smaller Zones within which LMPs are fairly uniform.
- Require that DRs purchase their baseline at the nodal prices where the reductions are to occur.
- Limit DR participation via administrative rules and default no-pay demand reduction percentage relative to the customer’s actual consumption.
DR Market Barriers
(In addition to the Zonal/Nodal Arbitrage)

- Energy prices are insufficient to encourage DR so capacity and AS payments will be of primary importance; This argues for the development of centralized capacity markets that do not bias for or against particular resources (generation vs. non-generation).
- Customers may not like transitioning from emergency DR currently managed by IOUs to ‘earlier’, more frequent or Price DR products cleared in wholesale markets.
- Retail Rate Policies and Metering Infrastructure have limited Real Time Price signals, so customers cannot see price signals and have no incentive to reduce consumption.
- Demand response can’t be fully active in retail markets until retail customers see prices and a linkage exists between retail and wholesale markets.
DR Other Barriers

- Regulatory pressures from cities which are in load pockets make it difficult to implement nodal pricing for retail pricing applications; this make difficult to align pricing for generation, load and DR resources
- Need to resolve federal and state DR policy differences
- Customer behavior very difficult to change
- Customer perceive market products difficult to understand and accept
- Communication infrastructure and data exchange linkages between parties can be a barrier (slow penetration to distribution customers)
Market Participant Perspective:
Simulate Co-optimization of Energy & AS in same manner as the ISOs

- Simulate Co-optimization of Energy and Ancillary Services in same manner as the ISOs
 - MILP representation
 - Multi-step simulation
 - Inter-temporal constraints, minimum up/down times, etc.
 - Startup and shutdown costs included
 - Ramp constraints
 - Iterating with full AC power flow where transmission constraints are added to MILP formulation using PTDFs
 - Infeasibilities enforced with penalties with post solution pricing run
Model the Network

- Full AC solution
 - Check line and branch group flows
 - Constraints over 85% of limit added to MIP dispatch so that they may be enforced
 - Linear PTDFs used to enforce constraints in MILP
- Monitored/Enforced Constraints(s)
 - Data from ISO related to;
 - All constraints including contingency(s)
 - Formulation associated with multi-dimensional constraints
 - Timely release of new Network models BEFORE they are put into production
 - Outage details of transmission network are often not provided
Critical information continued……

- MISO, ISO-NE, NYISO, PJM all provide data on monitored constraints, as well as the associated contingencies, in the event that a constraint becomes binding under contingency conditions.
- CAISO provides the shadow price and identifies the binding constraint but does not provide the cause why a constraint is binding or a description of the associated contingency where applicable.
- CAISO does not provide details of nomogram constraints enforced.
- Details of operational de-rating of constraints is often not provided.
Model Various Generator Types

- Model various Generator types,
 - Restrictions or Limitations, such as:
 - Thermal
 - Hydro,
 - Emissions

- Multi-Stage Generator Modelling
 - E.g. combined cycle 2 identical Gas Turbines (GT1 and GT2) and 1 Steam Turbine (ST); the feasible configurations are:
 - a. Configuration 1: (GT1 and ST) or (GT2 and ST)
 - b. Configuration 2: GT1 and GT2 and ST

- Transition matrix of feasibility and costs between configurations
Bid Data

- Modeling bid data is a very complex undertaking
 - Best source of bid data are publicly posted on ISOs OASIS historic Bid data
 - ISOs does not provide resource names of bids
 - Start Up costs and No Load costs and aggregate unit distribution factors are not provided to market participants
 - Similarly convergence bid pnodes are not provided
 - Formats vary and are NOT consistent across all ISOs
 - For example,
 - MISO gives all the cleared bids/offers, but not the actual MP name
 - Some ISOs only give the aggregated bids/offers that were cleared
Illustration of FTR Valuation Results
Summary

- State of the art methodologies are currently deployed to clear the DAM.
- However, high penetration of Renewable Energy Sources poses significant operational and market challenges.
- Similarly, to maximize the benefits of Demand Response, substantial changes are required in the clearing and settlements of the wholesale markets.
- Substantial progress has been made in accurately simulating energy markets to support Market Participants in various applications such as FTR analysis and bidding strategies.
- However, the market data required for accurate simulations are not consistent across markets and in some cases are not available.