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Outline

Brief summary and comparison of different centralized
planning models

A proposal for Long-Term Energy Market Design: Minimally
coordinated IPF for managing systematic and mandatory
information exchange between market participants.

- A model and algorithm in support of long-term
decentralized decision making by the generators and by the
demand and for the interactions with the Long-Term Market

Maker (1SO)

. An example



Long - standing planning problems

= Inability to forecast long-term demand accurately

m [nefficiency of long-term planning (capacity under-utilization)
m Multiple performance metrics

m No market mechanism to support new investments

m Lack of systematic signals for new investments

m Non - transparency of long-term bilateral contracts

m Privacy of market participants data

There is a need for transforming the existing planning framework
to a more interactive framework in which the necessary data would

become transparent and the necessary information would be
exchanged.



Our proposal ---Long-Term Energy Market

Interactive planning framework (IPF) for long-term
planning

m Interactive framework
= Preparation phase
= Negotiation phase
= Commitment phase
m Transparency of necessary data
m Exchange of necessary information



Key planning considerations

Planning process depends on power industry structure
m [raditional
m Restructured

Existing planning models
m Least-cost planning
m Two-part tariff
m Decoupled operations planning
m Centralized peak-load pricing
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Demand forecast

Annual demand Load duration curve

ordering data in descending
order of magnitude
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Power Industry Structures

Traditional Restructured
m Organizational structure m Organizational structure
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Dependence on Power Industry Structure

Traditional

Restructured

Power, information and money flow
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Least- cost planning (utility)

Profit maximization (generators)
Utility maximization (demand)
Required reliability level (ISO)
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Multi-attribute trade-off analysis

Multi-attribute optimization is a difficult class of planning problems where
more than one attribute needs to be optimized and reconciled with other

attributes.
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Total, average and marginal cost

m Total cost (TC) is defined as the sum of variable (VC) and fixed cost (FC):
IC=VC+FC

m Average cost (AC) is equal to the total cost divided by the quantity produced
AC=TC/Q=VC/Q+FC/Q

m Marginal cost is a cost of producing an additional unit of output:
MC=ATC/AQ=AVC/AQ+AFC/AQ or dTC/ dO= dVQ d(

m Profit (PR) is difference between total revenue (TR) and total cost where
revenue is defined as the product of price (p) and the quantity produced (Q) :

PR=TR-TC= p-Q-TC



Long-term planning models-centralized

m Least-cost planning (LCP)
m Two-part tariff planning (TPT)
m Decoupled operations planning (DOP)

m Centralized peak-load pricing planning (CPLP)
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Least-cost planning model

The main metrics: Minimize net present value of total generation costs
over the given time horizon

g=1

nt ng ng
Tt \,t T
{ ¢ (P Yeturation } + Y RoR-C, (a7 )}

ng
Tt Tt
Subject to: EPg =F;" +5RR
g=1

n
E P - plimax [ RR
g=1

0<P'<F™+AP,  COMPLEX DP PROBLEM



Centralized peak-load pricing

The main idea:

Consumers who are using a system during capacity scarcity period
are responsible for investment into new capacity.

The optimal solution will be reached if investment into new capital
investment equals to cumulative operating inefficiency
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Decoupled operations and planning

The main idea:

To encourage new generation investments by providing more stable
revenue to generator owners and to reflect the long-run cost of
capacity resources.
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Model comparison — example setting
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Model comparison - results

Demand Total O&M and capital costs Total generation revenue
payment | Base Intermediate | Peak Base Intermedia | Peak
te
[billion $]

Least cost planning | 19 478 19.44 0.038
Two- iff
wo-part tarl 19.478 19.44 0.038
(regulated)
Two-part tariff
wo-part tart 19.459 | 12.41 6.878 0235 | 0.019 | -0.083 | 0.000
(pay as bid price)
Two-part tariff

] ) 50.890 12.41 6.878 0.235 30.46 0.904 0.000
(uniform price)
Decoupled

i

Operations 58.717 | 11.449 |  9.068 1154 | 36265 | 2151 | 0.145
planning
(uniform price)
Peak-load pricing 43.761 | 12.368 4.038 0.000 | 27.250 0.105 0.000

Systematic comparison of different planning models.



Key conclusions

m The long run performance (LRP) of all generators is always higher in the
LCP than in the CPLP.

m The LRP of all generators is always higher in the DOP that in the LCP.

m For the case of CPLP, the annual capital cost of each generator is
always recovered, and equals to the cumulative sum of the short-run
marginal profit by the generator over the year.

m Therefore in the case of CPLP (assuming no lumpiness of investment)
there is no need for so-called second best tariff in order to implement
guaranteed cost-plus capital cost recovery by the generators.

m On the other hand, the LCP and DOP methods require second-best
design of payments by the consumers to guarantee cost-plus recovery
of capital generation cost.



Key conclusions

m A possible implementation of full “cost +” recovery is so-called two-part
tariff, which basically requires that the variable cost be paid according
to the short-term ED and the annual capacity cost be recovered
through the second part of the tariff.

m CPLP method is the only method which leads to the “optimal’
generation mix. The “optimal” generation mix means that the new
Incremental capital cost investment around such mix is the same as the
cumulative inefficiency if such investment is not made.



Single - vs. multi-objective model
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Single - vs. multi-objective model comparison

o)

14.5 15 155 16 16.5 17
Total Operating Cost for a plan [§ 1e9]

18

Pareto frontier

8
z o s 25| i§$
%21‘3&‘3’**%‘ g f I
® . (PR : 29 . ..J o 1’::; = ]
DT el BT T o £3 iy
% IR A, T Tl SO s i
@ . A
E
=
o
’_

Total Investment Cost [ 1e9] 2 ' 14 Total Operating Cost [§ 1¢9]

Single-attribute vs. multi-attribute planning

The given example illustrates that multi-objective
optimization problem gives the planner an option to . .
select the best possible plan based on the trade-off I A
between different objectives. Multi-attribute planning
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Interactive planning framework (IPF)

technical constraints? v Q3: Are there candidate technologies
Q1 which would ensure and improve PM;
Q2: Are there possible new YES NO with corresponding constraints?
technologies to improve PM;?
Stop +NO <Q> —
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Given: (1) Today’s Energy System; (2) Projected Load Growth;
(3) Projected Fuel Price; (4) Projected Environmental Constraints

Q1: Will today’s power system meet




System Owners / Operators Decision Process

From ) ) ) From
Main Input » List candidate technologies to be assessed [« = ~Candidate Technalogy owners
(1) Today’s Energy System; CT= 1i2, ..N (available technologies)

(2) Projected Load Growth;

(3) Projected Fuel Price;

(4) Projected Environmental >
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Candidate Technology Owner Decision Process

YES
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From > j Combinations of Candidate
Main Input period Tcy; System S ) Technologies
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(to update list of candidate technologies to be assessed)



Basic Market desigh—

Phases and different phases time line
Interactive planning framework consists of three phases:

m Preparation phase
m Negotiation phase
m Commitment

o

| | Yo |y1 | | YT horizon

v

Revisiting
Decision
Period

Minimum Planning

Building Period
Time

Present Day
Commitment+—

Preparation Phase
Negotiation Phase

Time line of different phases for a planning period that starts at y,



Preparation phase
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Step 1: During the preparation phase, ISO collects data from
existing participants and estimates future MCP and distributes it
to all existing and possible new market participants.

Existing
generation

Existing Long-term load
demand forecast
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Preparation phase

Market clearing price
estimation
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Negotiation phase

Step 2: During the negotiation phase, each generator maximizes its own
profit based on the received MCP and designs short-run and
long-run generation bidding functions.

Step 3: During the negotiation phase, each demand maximizes its own
benefit based on the received MCP and designs short-run and
long-run demand bidding functions.

Step 4: During the negotiation phase, ISO collects long-run bid functions
from the existing and new participants, clears both long-term
and short-term markets based on the bids offered by the market
participants, estimates the likely future MCPs, and distributes
biding information to all participants.

Step 5: During a negotiation phase, information is interactively
exchanged between participants and ISO until they reach a
common decision.



Negotiation phase

Output from preparation phase

e Profit/Benefit maximization
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Commitment phase

Step 6: During the commitment phase, all participants commit to buy/sell
power quantity at long-run market price.
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Commitment phase



ISO decision process

= Annual Iong-term market

mmE o ELTB (E )—LTBd (Ed)

Available
units

n n,
Subject to: z Eg = Eg E pmax E APT PT max

g=I g=1

m Economic dispatch

T,t
2: -T T,t ) 2: T,t )
T aXT : P U (P (P t duration A
de,’])g, o

T,t
= Py
n, PT,t
. T,t T.t T,t max T g
Subject to: P> =P O0<Fp” < F™ + AR,



Generator decision process

m Profit maximization
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Demand decision process

m Utility maximization
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Comparison of the existing models

Pricing Demand Bidding function type

fy f, fy fy
Pay as bid Inelastic IPF=LCP IPF=LCP IPF~TPT
Uniform Inelastic
Pay as bid Elastic CPLP
Uniform Elastic

m |PF provide incentives to new investments because it gives generator
owners the possibility to recover capital investments

m The IPF results in the same optimal solution as the LCP (inelastic
demand).

m The IPF results in the same optimal solution as the CPLP (elastic
demand



Conclusions

We have proposed an efficient, long-term planning framework and
model-based market design that defines necessary data transparency

and information exchange in support of investments in different electrical
power generation technologies.

Our hypothesis is that investment effectiveness of the changing industry in
both new and old technologies will depend on the type of information
available, the time horizon over which the information is exchanged, and
whether the information is binding or not.

Multi-objective optimization gives the planner an option to select the best
possible plan based on the trade-off between different objectives.



Conclusions

The IPF framework is shown to:

m Provide incentives to new investments because it gives generators
owners a possibility to recover capital investments

m The IPF will result in the same optimal solution as the LCP in the case
of inelastic demand

m The IPF will result in the same optimal solution as the CPLP. For this
case there is a break-even point between annual capital cost and
cumulative operating and maintenance cost over each year



Next steps

- We recognize that the planning problem is far from being a deterministic
problem; the long-term system conditions are unlikely to be known with
high confidence.

. QOur proposed interactive planning framework (IPF) lends itself to
implementing such management of uncertainties over time and market
participants.

- Simulations done to illustrate the deterministic version of [PF

-Stochastic Dynamic Programming Challenge to Assess Value at Risk
—huge computational challenge



