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Outline

Wind power and demand side management—new
sources of complexity

Problem formulation for integrating wind and elastic
demand—centralized UC/MPC; an example

Scalability problem in centralized UC and UC market
implementation—common challenge/approach

Temporal vs spatial LR issue --basic efficiency/
emissions concern with today’s UC

Managing complexity—Distributed Interactive Unit
Commitment (DIUC)

Numerical example/comparison with benchmark
solution- Integration of >50% wind



New source of complexity

* Supply the expected load with whatever produced by
intermittent resources combined with other traditional power
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Today: Choose output levels from conventional power plants to meet

the expected “net load” at minimum cost.




Unit commitment for sustainable integration of
wind and demand side

* Net system demand function of system imbalance;
greatly complicates the unit commitment problem

-number of states potentially huge in inelastic demand case;

- number of decision variables potentially huge in the demand elastic case.

 Two qualitatively different methods”

-Centralized U C---Demand, wind and generation cost functions short-
run marginal cost; UC constraints explicit at the ISO level.

- Distributed Interactive UC (DIUC) -When demand and cost

functions account for UC constraints (DIUC) [1—6]; computationally
manageable and provable lower bound performance under certain conditions



Motivation

More efficient utilization of
intermittent resources

Better Prediction of
Intermittent Resources?

More reliable operation of
intermittent resources
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Managing wind power—our approach [5]

Actively control the output of available
intermittent resources to follow the trend of
time-varying loads.

By doing so, the need for expensive fast-start
fossil fuel units is reduced. Part of the load
following is done via intermittent renewable
generation.

The technique used for implementing this
approach is called model predictive control (MPC)

[5].

Implicit value of storage



Centralized MPC --Benchmark

Predictive Model and
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u, : Output vector of all

generators at time step k

 Predictive model of load and intermittent

resources are necessary.

* Optimization objective: minimize the total

generation cost.

e Horizon: 24 hours, with each step of 5 minutes.



Problem 3A: Centralized MPC-based Dispatch with Inelas-
tic Demand

Solve : mlnz Z(C (Pg,(k))),ie G (39)
k=1i1eG

st.y Pg(k)=) L.(k),i€G,z€Z; (40)

L.(k) = f(L.(k—1)),z € Z; (41)

Pz (k) = g;(PE*(k — 1)); (42)

PE™ (k) = hi (PG (k — 1)); (43)

PE™ < Pg, (k) < PE™,j € G,y (44)

PEin < Pg, (k) < PE=,ic G\ G,; (45)
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Problem 3B: Centralized MPC-Based Dispatch with Elastic

Load

Solve : min Z(C(PG (k) = Y (B:(L.(k

Pe.L 1 — 1 ieG 2€Z

st.y Pg,(k)=) L.(k

ieG z€Z
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Model Predictive Control—Based
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* MPC is receding-horizon
optimization based control.

* At each step, a finite-horizon
optimal control problem is
solved but only one step is
implemented.

* MPC has many successful
real-world applications.
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TABLE I

GENERATOR PARAMETERS OF THE 12-BUS SYSTEM

Gen ID Type Capacity Marginal Cost Ramp Rate
1 Natural Gas 5000MW 1000$/MWh 100MW/5 min
2 Coal 9000MW 500S/MWh 1000MW/hour
3 Wind 3500MW 0S'MWh 150MW/5 min
4 Photovoltaic 1500MW 0S'MWh 100MW/5 min
5 Coal 8000MW 300$'MWh 800MW/hour
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Compare the outcome of ED from both the conventional and

proposed approaches.
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*: load data from New York Independent System Operator, available online at
http://www.nyiso.com/public/market_data/load_data.jsp



Rethinking the problem—

limits to complexity

* Clear that today’ MPC algorithms not scalable
as of now;

e Typical approximation—LR w.r.t. time;
assumes hierarchical time scale separation of
SCED and UC

* LR w.rt. to time questionable with persistent
changes in system inputs; complexity will
grow with new technologies (physics vs.
binary decisions);



The basic efficiency/emissions concern

* Natural “optimal” schedules of different
technologies very different; horizontal vs. vertical
unit commitment

* Brute-forcing all technologies to re-commit
using common clock is generally very inefficient

* Two possible solutions:

- centralized multi-stage UC over several time
horizons; still very complex

-interactive UC between the resources and
system operators; no LR wrt time; LR wrt units



Decomposition over (portfolia) of resources
critical; otherwise, the problem is not solvable; this
is particularly true when combining with line
switching
*Proposed new approach-Distributed Interactive
UC (DIUC) [2-7]

-LR w.r.t. (portfolia of) units NOT w.r.t. time

-for the changing industry (distributed,
interactive)

-for the regulated industry (centralized
algorithm)



Basic idea of minimally coordinated self-dispatch
—Distributed Interactive UC (DIUC)

* Different technologies perform look-ahead
decision making given their unique temporal and
spatial characteristics and system signal (price or
system net demand); they create bids and are
cleared by the layers of coordinators

e Putting Auctions to Work in Future Energy
Systems

* We illustrate next a supply-demand balancing
process in an energy system with wind, solar,
conventional generation, elastic demand, and
PHEVs.
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Our Proposed Framework: DIUC

Look-ahead Dispatch with ¢ Model Predictive
Active Load Management Control (MPC)
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At Generator Level—Primal Problem

K
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Main ideas of Adaptive Load
Management (ALM)

* Reflecting various end-users’ needs and preferences into
demand response
— End-users’ info on preference sent to system

— Mapping physical preference into economic preference
- demand function

* (current systems) top-down control of loads .
- (futlure systems) two-way communicative and adaptive
contro

 Load aggregators’ role
— Mediator between system/market and end-users
— Value of aggregating different resources and risk management

 Different load profiles, inelastic and elastic demands,
distributed energy resources (DER), etc.



Today’s demand response scheme:
Direct load control

Direct Load Control by Utilities
Direct control
(static optimization)

Utility 1 Utility 2 Utility 3
! 7 \
/
// \
/’/ \\
// \\\;
Doherty *—I ‘ 1l Univ. C ’Lte’
Energy ma %er Energy manager
Porter Hall
nergy manager
Energy manager Energy manager
Pharmacy .
Hospital

One-way flow of information
— Load management conducted
by utilities
— Top-down control

Exclusive contracts between
supply and demand

Direct load control

— Regardless of end-users’
preferences

— No access to market
information for end-users

— End-users’ information invisible
to system



Adaptive Load Management (ALM) —
Look-ahead distributed self-dispatch

* Problem setup

— 10 end-users with different index (°F)

temperature preferences 1 68 75

— Optimizing energy usage 2 m 77
over 24 hours 3 72 75
* Hourly-varying electricity 4 74 79
price given (real-time pricing) 5 75 80
e Qutdoor weather 6 64 75
temperature given ; 63 77
Hourly real-time pricing rates 8 77 79
15

- A 9 72 77
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Primal problem at the demand level

* Obtaining individual demand function subject to
temperature comfort level

ko+N

g /2 b5t ) + G 1)

where TI[k +1] = Az‘Ti[ 1+ Bz’xi[k]
subjectto 7™ <T[kl=T™ forall &

 Obtain different x|k s for different Al«$ to infer
demand functions

—> PHYSICS AT PLAY



Demand function

* Objective

— To model price-responsive loads to integrate into the system

optimization

— To include information of end-users’ utility (benefit) in system

optimization

— To see if price-responsive loads compensate with volatile intermittent

resources

e Whatitis

— Function of end-users’ willingness-to-pay with respect to electricity

demand quantity
d(PD )= aP, +b

Unit price‘
{cents/kWh)

5

Ll

n

3 Dem;nd
(kw)



Demand function (cont’d)

e How to obtain

— Calculate optimal energy usage by hours with a given
electricity price

— Perturb the given price by a certain percentage (e.g. +20%)
and re-calculate optimal energy usage with new prices

— Curve-fit price-demand quantity pairs to identify the
parameters of a demand function

Unit price T
(cents/kWh)

Deman(i
(kw)



Resulting bid curves by demand—
Result of solving primal problem

e Demand functions of end-user #1
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Information flow of ALM—Auctions Put to Work (Primal-
Dual Solution Interactions)

Tertiary level MarkEt

Bid function
b(A) 0 ( l Q
Market price &
A \
Secondary level E:I..: .:.

Load aggregator I  Load aggregator Il  Load aggregator I11

Demand function End-user price
b(A) A!

Primary level
End-user @




Information flow of ALM

Primary layer (from end-users to load aggregators)
— Physical preference = economic preference
— Individual demand function

Secondary layer (from load aggregators to market)
— Aggregating end-users’ energy usage + risk management
— Optimal energy purchase/market transaction given system price

Back to primary layer (from load aggregators to end-users)

— Energy price adjusted according to system/locational price : \*A
as a function of Asystem



Bid curves for different technologies—
result of distributed MPC
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Implementation in Markets—DIUC---Primal-
Dual Solution Interactions (spatial/not temporal)

The System Operator: Maximize Social Welfare While Observing Transmission
Constraints

Clearing

i J
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[2] N. Abdel-Karim and M. llic,"Short Term Wind Speed Prediction by Finite and Infinite Impulse Response Filters: A State
Space Model Representation Using Discrete Markov Process", IEEE PowerTech Conference, Romania June 2009

[3]J. Joo and M.D. llic, “A Multi-Layered Adaptive Load Management (ALM) system: information exchange between
market participants for efficient and reliable energy use,” submitted to 2010 IEEE PES Transmission and Distribution
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Integrating fossil, wind, solar and
demand side and PHEVs

Table 1: Generator parameters of the 12-bus system

Generator ID || Type || Min Generation || Max Generation || Generation Cost Ramp Rate
1 Gas 20 500MW 350$/MWh 150MW /5 min
4 \\\ 2 Coal 20 500MW 150$/MWh 15MW/ 5min
\\‘ \ 3 Wind 0 250MW 0$/MWh 150MW /5 min
G 1 \\ \ 4 PV 0 600MW 0$/MWh 200MW /5 min
. 5 Coal 10 500MW 100$/MWh 10MW /5 min
_(Natural Gas) \
N
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Compare the outcome of ED from both the centralized and
distributed MPC approaches.
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Preliminary Results: 50% Wind

MPC-based DYMONDS Dispatch with 50% Wind
3500F ' ' =

N w
)] o
o o
o o
T T

< 2000f ’ 7
= s | 02l (In€lastic Case) . i i
1800f L Total Load (Elastic Case) . .. e ‘-‘1 b
1000] *'**'*+ Wind generation (Inelastic Load)|- _, ;* ‘—\“._(,:' =7 .
+= = 1 \Wind Generation (Elastic Load) |7 2!

500F= >y . ]

0 -' b’s"’“‘.'“'su aom 9~\"\”!1\‘ f

0 50 100 150
Time Steps (10 minutes interval)
2000 T T

v Coal output with inelastic load

vm w1 Coal output with elastic load

1500 s N atural gas unit output with inelastic load
v Natural gas unit output with elastic load

0 50 00 150
Time Steps (10 minutes interval)

. [5] Marija llic, Le Xie, and Jhi-Young Joo, “Dynamic Monitoring and Decision Systems (DYMONDS) for Efficient
(() Electrical & Computer Integration Wind Power and Price-Responsive Demand:

ENGIN EER NG Proof of Concept on the IEEE RTS System”, EESG WP 2009.
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Preliminary Results: 50% Wind

Demand quantity and elasticity with 50% wind power
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Potential Savings

x 10° Cost Difference between MPC-based Dispatch for 50% Wind Case
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Optimal Control of Plug-in-Electric Vehicles: Fast

vS. Smart
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Information flow—Fantastic Use of
Multi-layered Dynamic Programming

Charge Plan P(t)
Charge Control
Price Forward
Curve Cg(t)

Degree of / ‘

Discharge: x(t)
Time of Departure: T

;? ISO
Ind ependent

L oL Power Flow: Pt System Operator
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Plug-and-Play (No Coordination)?
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Total generation and total demand imbalances in 50% wind case



Smart Grid [1]
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Distributed Interactive UC--DIUC

* Allow different technologies to optimize in
anticipation of system conditions while taking
into account their unique inter-temporal
constraints and sub-objectives;

* The distributed optimization done in a look-
ahead dynamic way at the resource level to
create cost functions (bidding functions for

both supply and demand

)

* Result: Lower electricity

orices and higher

efficiency; minimized overall UC cost



Our general framework

* Use adequate performance measures

* Perform meaningful spatial decomposition and
aggregation (zoned, portfolios)

* |terate to ensure that the inter-dependencies are
accounted for by inter-actively exchanging information

-Even coordinated software must account for the
information that is iteratively updated from the non-utility
resources

- In the market environment it becomes necessary to
reconcile choice and system-wide objectives

-Use predictions create bid functions (instead of numbers)
to control software performance
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